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Abstract This paper gives a chance of incorporating a discounting rate with discrete 

scheduled replacement model involving minor repair. An operating unit sometimes 

cannot be replaced at the exact optimum replacement time for some reasons. The unit 

may be rather replaced at idle times, such as a day, a week, a month, a year and so on. 

To address such problem of replacing a unit at idle times, this paper come up with an 

explicit expression of a discounted discrete scheduled replacement model for a unit 

subjected to three categories of failures (which are Category I, Category II and Category 

III failures). It is assumed that the replacement is at scheduled times 𝑁𝑇(𝑁 = 1, 2, 3, … ) 

for a fixed 𝑇 > 0, is such that the model involves minimal repair and discounting rate 

(∝ > 0). Finally, a numerical example is given to illustrate the theoretical results of this 

model. 
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1. Introduction 

The failures of an operating units might sometimes be costly or dangerous. It is an 

important problem to determine when to replace or preventively maintain a unit before 

failure. Because such failures have negative effect on revenue, production of defective 

items and causes delay in customer services. A situation may arise, such that an operating 

unit sometimes cannot be replaced at the exact optimum replacement times due to some 

reasons like shortage of spare units and lack of workers. At such incidences, units may 

be rather replaced in idle times, such as weekend, month-end or year-end. For instance, 

the tires of fighter jets are replaced preventively at a required number of times of flights, 

which may depends on the type of uses. Briš et al. (2017) described a new method for 

optimal maintenance strategy of a complex system respecting a given reliability 

constraint. Coria et al. (2015) proposed an analytical optimization method for preventive 

maintenance (PM) policy. Chang (2014) considered a system which suffers one of two 

types of failures based on a specific random mechanism. Cha and Finkelstein (2018) 
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suggested the new type of minimal repair to be called conditional statistical minimal 

repair, and their approach goes further and deals with the corresponding minimal repair 

processes for systems operating in a random environment. Fallahnezhad and Najafian 

(2016) studied the best time for performing preventive maintenance operations for many 

systems. Jain and Gupta (2013) studied optimal replacement policy for a repairable 

system with multiple vacation and imperfect coverage. Enogwe et al. (2018) used the 

knowledge of probability distribution of failure times and proposed a replacement model 

for items that fail suddenly.  Lim et al. (2016) studied age replacement policies in which 

a system is replaced by new one at planned age and when failure occurs before the 

planned replacement age, it can be either perfectly repaired with random probability 𝑝 

or minimally repaired with random probability 1 − 𝑝. Liu et al. (2018) established 

uncertain reliability mathematical models of simple repairable series systems, simple 

repairable parallel systems, simple repairable series-parallel systems, and simple 

repairable parallel-series systems, respectively. Malki et al. (2015) investigated on age 

replacement policies for a parallel system with stochastic dependence.  Murthy and 

Hwang (2007) discussed that, the failures can be reduced (in a probabilistic sense) 

through effective maintenance actions, and such maintenance actions can occur either at 

discrete time instants or continuously over time. Nakagawa (2005) presented a modified 

standard age replacement (SAR) model to discrete time age replacement model.  

Rebaiaia and Ait-kadi (2020) studied the problem of selecting the best among three 

maintenance strategies for conducting maintenance planning that are the most 

economical. Safaei et al. (2018) investigated the optimal period for preventive 

maintenance and the best decision for repair or replacement in terms of some measures. 

Sudheesh et al. (15) considered the discrete age-replacement model, and then studied the 

properties of mean time to failure (MTTF) of a system. Tsoukalas and Agrafiotis (16) 

presented a new replacement policy for a system with correlated failure and usage time. 

Waziri et al. (17) constructed some discounted age replacement models with minimal 

repair for a series system, which is subjected to two types of failures. Waziri et al. (18) 

investigated some characteristics of the age replacement model with minimal repair for 

a series-parallel system with six units, such that the six units are having non-uniform 

failure rates. Xie et al. (2019) analyzed the impacts of cascading failures on the reliability 

of series-parallel systems, where they studied the effects of safety barriers on preventing 

cascading failures, and evaluated the importance of the safety barriers. Yaun and Xu 

(2011) studies a cold standby repairable system with two different components and one 

repairman taking multiple vacations. Yusuf and Ali (2012) considered two parallel units 

in which, both the units operate simultaneously. Yusuf et al. (2015) modified the 

standard age replacement model by introducing random working time Y. Zaharaddeen 

and Bashir (2014) studied on optimal repair replacement policies with two types of 

failures.  Zhao et al. (2014) answered the problem which replacement is better between 

continuous and discrete scheduled replacement times. Zhao et al. (2017) collected some 

recent results on age replacement policies.  

This paper tends to extend the proposed discrete age replacement model presented by 

Nakagawa (11). The objectives of this paper are : (1) to come up with the assumptions 

that describe the unit;  (2) to come up with the expression of failure rate and reliability 
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function of the unit based on the assumptions;  (3) to come up with the discounted 

discrete scheduled replacement model of the unit ; (4) to provide simple numerical 

example, to test the system. The main contributions of this paper are: (1) to provide 

chance of replacing a unit at ideal time; (2) to investigate characteristics of a discounted 

discrete age replacement model involving minimal repair; (3) to investigate the effect of 

discounting rate (∝> 0) in obtaining optimal discrete scheduled replacement time of a 

unit. Furthermore, the remainder of this paper is organized as follows: Section 2 

discussed the methodology of the study; Section 3 discussed the proposed models; 

Section 4 presents the numerical example; Section 5 presents the discussion of results 

obtained; Section 6 discussed the conclusion.  

2. Methodology   
2.1. Notations 

• ∝ : Discounting rate. 

• 𝑟1(𝑡): Rate of Category I failure of the unit. 

• 𝑟2(𝑡): Rate of Category II failure of the unit. 

• 𝑟3(𝑡): Rate of Category III failure of the unit. 

• 𝑅1(𝑡): Reliability function of the unit due to Category I failure.  

• 𝐹1(𝑡): Category I failure distribution of the unit. 

• 𝐶2 : Cost of minimal repair of the unit due to Category II failure. 

• 𝐶3 : Cost of minimal repair of the unit due to Category III failure. 

• 𝐶𝑝 : Cost of planned replacement of the unit at 𝑁𝑇, for 𝑁 = 1, 2, 3 …. 

• 𝐶𝑟 : Cost of un-planned replacement of the unit due to Category I failure. 

• 𝑁∗: Optimal discrete scheduled replacement time of the unit. 

2.2. Description of the unit 

Consider a unit which is subjected to three Categories of failures, which are Category I 

failure, Category II failure and Category III failure. Category I failure is catastrophic 

failure, which occurs suddenly and it is un-repairable failure. Category II failure and 

Category III failure occurs gradually with time and usage, but the two failures (Category 

II and Category III failures). The rate of arrival of Category III failure is higher than that 

of Category II failure. The rate of arrival of Category II failure is higher than that of 

Category I failure. The unit is subjected to total and instant replacement action, whenever 

it reaches planned replacement time 𝑁𝑇 (𝑁 = 1, 2, 3, … ) for a fixed T. To include the 

discounting factor (𝛼) in the replacement model, 𝑒−𝛼(𝑁𝑇) will be included for each of an 

associated cost of replace/repair of a type of failure of the unit, where 𝛼 is fixed. 

2.3. Assumptions  

1. Category I failure is un-repairable one, while Category II and Category III failure 

are both repairable failures. 

2. The cost of replacement/minimal repair follows the order : 𝐶𝑟 > 𝐶𝑝 > 𝐶2 > 𝐶3. 

3. All the three failures are detected instantaneously. 
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4. All required resources are available when needed, which means that 

replacement/minimal repair. 

5. If the unit failed due to Category I failure, the unit will be replaced completely with 

new one. 

6. If the unit failed due to Category II failure, then the unit is minimally repair, and 

allow the unit to continue operating from where it stopped. 

7. If the unit failed due to Category III failure, then the unit is minimally repair, and 

allow the unit to continue operating from where it stopped. 

8. The unit is replaced at scheduled time 𝑁𝑇(𝑁 = 1, 2, 3 … ) for a fixed T after its 

installation or Category I failure of the unit, whichever occurs first.  

9. The repair time for both Category I and Category II failures is negligible.  

3. The discounted replacement model 

Based on the assumptions, the reliability function of the unit with respect to Category I 

failure is 

𝑅1(𝑁𝑇) = 𝑒− ∫ 𝑟1(𝑡)𝑑𝑡
𝑁𝑇

0    (1) 

Based on the assumptions, the cost of un-scheduled replacement of the unit in one 

replacement cycle is  

∫ 𝐶𝑟𝑒−𝛼(𝑡)𝑑𝐹1(𝑡)
𝑁𝑇

0

 
(2) 

Based on the assumptions, the cost of scheduled replacement of the unit at time 𝑁𝑇 in 

one replacement cycle is  

𝐶𝑝𝑒−𝛼(𝑁𝑇)𝑅1(𝑁𝑇) (3) 

Based on the assumptions, the cost of minimal repair of the unit due to Category II failure 

in one replacement cycle is 

∫ 𝐶2𝑟2(𝑡)𝑒−𝛼(𝑡)𝑅1(𝑡)𝑑𝑡
𝑁𝑇

0

 
(4) 

Based on the assumptions, the cost of minimal repair of the unit due to Category III 

failure in one replacement cycle is  

∫ 𝐶3𝑟3(𝑡)𝑒−𝛼(𝑡)𝑅1(𝑡)𝑑𝑡
𝑁𝑇

0

 
(5) 

Based on the assumptions, the mean of one replacement cycle is  

∫ 𝛼𝑒−𝛼(𝑡)𝑅1(𝑡)𝑑𝑡
𝑁𝑇

0

 
(6) 
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Adding up equation (1) to equation (6), the discounted discrete scheduled replacement 

model of the unit in one replacement cycle is  

(7) 

𝐶(𝑁) =  
𝐶𝑝𝑒−𝛼(𝑁𝑇)𝑅1(𝑁𝑇)+∫ 𝐶𝑟𝑒−𝛼(𝑡)𝑑𝐹1(𝑡)

𝑁𝑇
0 +∫ 𝐶2𝑒−𝛼(𝑡)𝑅1(𝑡)𝑟2(𝑡)𝑑𝑡+∫ 𝐶3𝑒−𝛼(𝑡)𝑅1(𝑡)𝑟3(𝑡)𝑑𝑡

𝑁𝑇
0

𝑁𝑇
0

∫ 𝛼𝑒−𝛼(𝑡)𝑅1(𝑡)𝑑𝑡
𝑁𝑇

0

          

Using the expressions:  𝐹1(𝑡) = 1 − 𝑅1(𝑡) and 𝑑𝐹1(𝑡) = 𝑟1(𝑡)𝑅1(𝑡)𝑑𝑡, equation (7) can 

be written as           

(8) 

𝐶(𝑁) =

𝐶𝑝𝑒−𝛼(𝑁𝑇)𝑅1(𝑁𝑇)+∫ 𝐶𝑟𝑒−𝛼(𝑡)𝑟1(𝑡)𝑅1(𝑡)𝑑𝑡
𝑁𝑇

0 +∫ 𝐶2𝑒−𝛼(𝑡)𝑅1(𝑡)𝑟2(𝑡)𝑑𝑡+∫ 𝐶3𝑒−𝛼(𝑡)𝑅1(𝑡)𝑟3(𝑡)𝑑𝑡
𝑁𝑇

0
𝑁𝑇

0

∫ 𝛼𝑒−𝛼(𝑡)𝑅1(𝑡)𝑑𝑡
𝑁𝑇

0

                 

The discounted discrete scheduled replacement model (equation (8)) is simplify to 

𝐶(𝑁) =
𝐶𝑝𝑒−𝛼(𝑁𝑇)𝑅1(𝑁𝑇) + ∫ 𝐾(𝑡)𝑅1(𝑡)

𝑁𝑇

0
𝑒−𝛼(𝑡)𝑑𝑡

∫ 𝛼𝑒−𝛼(𝑡)𝑅1(𝑡)𝑑𝑡
𝑁𝑇

0

 
(9) 

Where 

𝑘(𝑡) = 𝐶𝑟𝑟1(𝑡) + 𝐶2𝑟2(𝑡) + 𝐶3𝑟3(𝑡) (10) 

Noting that, C(N) is adopted as the objective function of an optimization problem, and 

the aim is to determine an optimal replacement number 𝑁∗that minimizes 𝐶(𝑁). 

4. Numerical example  

 Let the rate of Category I, Category II and Category III failures of the unit follows 

Weibull distribution: 

 

𝑟𝑖(𝑡) = 𝜆𝑖 ∝𝑖 𝑡∝𝑖−1    for 𝑖 = 1, 2, 3,                                                                                     (11) 

where ∝𝑖> 1 and 𝑡 ≥ 0. 

 Let the set of parameters and cost of repair/replacement be used throughout this 

particular example: 

1. ∝1= 2, ∝2= 3, ∝3= 3. 

2. 𝜆1 = 0.0002, 𝜆1 = 0.04, 𝜆3 = 0.02. 

3. 𝐶𝑟 = 50, 𝐶𝑝 = 40, 𝐶2 = 3, 𝐶3 = 1.5. 

By substituting the parameters in equation (11), the failure rates of Category I, Category 

II and Category III as follows : 

 𝑟1(𝑡) = 0.0004𝑡                                                   (12) 
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and                       

𝑟2(𝑡) = 0.12𝑡2 (13) 

and     

𝑟3(𝑡) = 0.06𝑡3                (14) 

Table 1 below is obtained by substituting the assumed cost of replacement/repair (𝐶𝑟 =

50,𝐶𝑝 = 40, 𝐶2 = 3, 𝐶3 = 1.5) and rates of Category I, Category II and Category III 

failures (equations (12), (13) and (14) ) in the total replacement cost rate of the unit 

(equation (10)) where T=1 and different values of discounting rate (𝛼 = 0.01, 𝛼 = 0.05, 

𝛼 = 0.1, 𝛼 = 0.15 and 𝛼 = 0.2). While table 2 is obtained by substituting the assumed 

cost of replacement/repair (𝐶𝑟 = 50, 𝐶𝑝 = 40, 𝐶2 = 3, 𝐶3 = 1.5) and rates of Category 

I, Category II and Category III failures in the total replacement cost rate of the unit, 

where 𝛼 =1 and different values of T (𝑇 = 1, 𝑇 = 2, 𝑇 = 3, 𝑇 = 4 and 𝑇 = 5). 

Table 1.The values of C(N) versus 𝑁 (1, 2, 3 … ) with different values of discounting 

factor (𝛼), when 𝑇 = 1. 

N C(N) with 

α=0.01 

C(N) with 

α=0.05 

C(N) with 

α=0.1 

C(N) with 

α=0.15 

C(N) with 

α=0.2 

1 39873.107 7814.353 3807.13 2471.56 1803.95 

2 20096.804 3857.069 1827.59 1151.77 814.59 

3 13801.857 2592.478 1192.44 727.30 496.38 

4 10985.513 2018.229 899.461 529.38 347.33 

5 9644.837 1731.965 746.5227 422.79 265.75 

6 9110.050 1598.002 664.9536 361.45 217.00 

7 9092.142 1556.863 624.3298 324.94 185.86 

8 9444.784 1577.671 608.6883 302.67 164.60 

9 10084.963 1642.29 608.6077 288.59 148.98 

10 10961.238 1738.983 618.0439 279.00 136.56 

11 12039.312 1859.541 632.8908 271.61 125.94 

12 13294.817 1997.849 650.2568 264.98 116.33 

13 14709.440 2149.119 668.0691 258.25 107.31 

14 16268.696 2309.456 684.8398 250.93 98.69 

15 17960.608 2475.599 699.5171 242.81 90.39 
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Table 2. The values of C(N) versus 𝑁 (1, 2, 3 … ) with different values of T, when ∝=

0.01. 

N C(N) with T=1  C(N) with 

T=2  

C(N) with T=3  C(N) with T=4  C(N) with T=5  

1 39873.107 20096.8 13801.857 10985.513 9644.837 

2 20096.804 10985.51 9110.050 9444.784 10961.238 

3 13801.857 9110.05 10084.963 13294.817 17960.608 

4 10985.513 9444.784 13294.817 19774.876 28082.804 

5 9644.837 10961.24 17960.608 28082.804 40275.090 

6 9110.050 13294.82 23734.634 37713.010 53678.392 

7 9092.142 16268.7 30384.074 48225.027 67464.851 

8 9444.784 19774.88 37713.010 59192.881 80826.780 

9 10084.963 23734.63 45537.744 70196.441 93004.464 

10 10961.238 28082.8 53678.392 80826.780 103327.294 

11 12039.312 32760.76 61956.662 90697.496 111257.053 

12 13294.817 37713.01 70196.441 99458.636 116425.105 

13 14709.440 42885.55 78225.827 106811.143 118656.500 

14 16268.696 48225.03 85879.988 112520.084 117976.004 

15 17960.608 53678.39 93004.464 116425.105 114594.122 

 

 

Figure 1. The plot of C(N) versus N, when T=1 and α=0.01 
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Figure 2. The plot of C(N) versus N, when T=1 and α=0.05 

 

Figure 3. The plot of C(N) versus N, when T=1 and α=0.1. 

 

Figure 4. The plot of C(N)  versus N, when T=1 and  α = 0.15 
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Figure 5. The plot of  C(N) versus N, whenT=1 and α=0.2. 

 

Figure 6. Comparing C(N) for α=0.01, α=0.05, α= 0.1, α=0.15, α=0.2. 

 

Figure 7. The plot of C(N) versus N, when T=2 and ∝=0.001 
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Figure 8 . The plot of C(N) versus N, when T= 3 and ∝=0.001. 

 

Figure 9. The plot of C(N) versus N, when T=4 and α=0.001 

 

Figure 10. The plot of C(N) versus N, when T=5 and α=0.001 
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Figure 11. Comparing the values of C(N), for T=1, T=2, T=3, T=4, T=5 

The following are some of the observations from the results obtained in the numerical 

example provided above: 

- Observe from Table 1, the optimal discrete scheduled replacement time of the unit 

is 𝑁∗ = 7, with cost rate 𝐶(𝑁∗ = 7) = 9092.142, when 𝑇 = 1 and ∝= 0.01. See 

Fig. 1 below for the plot of 𝐶(𝑁) versus N, when 𝑇 = 1 and ∝= 0.01. 

- Observe from Table 1, the optimal discrete scheduled replacement time of the unit 

is 𝑁∗ = 7, with cost rate 𝐶(𝑁∗ = 7) = 1556.863, when 𝑇 = 1 and ∝= 0.05. See 

Fig. 2 below for the plot of 𝐶(𝑁) versus N, when 𝑇 = 1 and ∝= 0.05. 

- Observe from Table 1, the optimal discrete scheduled replacement time of the unit 

is 𝑁∗ = 9, with cost rate 𝐶(𝑁∗ = 9) = 1556.863, when 𝑇 = 1 and ∝= 0.1. See 

Fig. 3 below for the plot of 𝐶(𝑁) versus N, when 𝑇 = 1 and ∝= 0.5. 

- Observe from Table 1, the optimal discrete scheduled replacement time of the unit 

(𝑁∗) is very large when 𝑇 = 1 and ∝= 0.15. See Fig. 4 below for the plot of 𝐶(𝑁) 

versus N, when 𝑇 = 1 and ∝= 0.15. 

- Observe from Table 1, the optimal discrete scheduled replacement time of the unit 

(𝑁∗) is very large when 𝑇 = 1 and ∝= 0.2. See Fig. 5 below for the plot of 𝐶(𝑁) 

versus N, when 𝑇 = 1 and ∝= 0.2. 

- Observe from Fig.6, as the discounting rate (∝) increases, the cost rate (𝐶(𝑁)) also 

increases. That is, (𝐶(𝑁), ∝= 0.01) < (𝐶(𝑁), ∝= 0.05) < (𝐶(𝑁), ∝= 0.1) <
(𝐶(𝑁), ∝= 0.15) < (𝐶(𝑁), ∝= 0.2).  

- Observe from Table 2, the optimal discrete scheduled replacement time of the unit 

is 𝑁∗ = 3, with cost rate 𝐶(𝑁∗ = 3) = 9110.05, when 𝑇 = 2 and ∝= 0.01. See 

Fig. 7 below for the plot of 𝐶(𝑁) versus N, when 𝑇 = 2 and ∝= 0.01. 

- Observe from Table 2, the optimal discrete replacement time of the unit is 𝑁∗ = 2, 

with cost rate 𝐶(𝑁∗ = 2) = 9110.050, when 𝑇 = 3 and ∝= 0.01. See Fig. 8 

below for the plot of 𝐶(𝑁) versus N, when 𝑇 = 3 and ∝= 0.01. 

- Observe from Table 2, the optimal discrete scheduled replacement time of the unit 

is 𝑁∗ = 2, with cost rate 𝐶(𝑁∗ = 2) = 9444.784, when 𝑇 = 4 and ∝= 0.01. See 

Fig. 9 below for the plot of 𝐶(𝑁) versus N, when 𝑇 = 4 and ∝= 0.01. 
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- Observe from Table 2, the optimal discrete scheduled replacement time of the unit 

is 𝑁∗ = 1, with cost rate 𝐶(𝑁∗ = 2) = 9644.837, when 𝑇 = 5 and ∝= 0.01. See 

Fig. 10 below for the plot of 𝐶(𝑁) versus N, when 𝑇 = 5 and ∝= 0.01. 

- Observe from Fig.11, as the value of T increases, the cost rate (𝐶(𝑁)) also 

increases. That is, (𝐶(𝑁), 𝑇 = 1) < (𝐶(𝑁), 𝑇 = 2) < (𝐶(𝑁), 𝑇 = 3) <
(𝐶(𝑁), 𝑇 = 4) < (𝐶(𝑁), 𝑇 = 5).  

-  Observe all the curves of Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 7, Fig. 8 and Fig. 

9 are in full convex or partial convex shape, while Fig. 10 is in s-shape. 

5. Discussion of the results obtained  

In trying to evaluate the characteristics of the discrete age replacement model, one can 

clearly see from Table 1 obtained that, as the discounting rate (∝) increases, the optimal 

discrete scheduled replacement time of the unit (𝑁∗) increases. Also, one can clearly see 

from Table 1, as the discounting rate (∝) increases, the average cost rate 𝐶(𝑁) also 

increases. Therefore, one can say that, the discounting rate (∝) has an effect in 

determining the optimal discrete scheduled replacement time of a unit. On the other hand, 

one can also clearly see from Table 2, as the value of  𝑇 increases, the optimal discrete 

scheduled replacement time of the unit (𝑁∗) decreases. While as the value of  𝑇 increases, 

the average cost rate 𝐶(𝑁) also increases. Therefore, one can see that, as the choice of T 

is small, the optimal discrete scheduled replacement time of the unit (𝑁∗) will be bigger, 

than when the choice of  T is small. 

6. Conclusion  

 

This paper investigated the characteristics of discrete scheduled replacement model with 

minor repair. And also this paper evaluated the effect of discounting rate (∝) when it is 

involved in the construction of the discrete scheduled replacement model. It is assumed 

that, Category I failure is an un-repairable one, which occurs suddenly. While Category 

II and Category III failures are repairable failures, which occurs due to time and usage. 

Some numerical examples where provided to present the characteristics of the model 

constructed. Finally, the results obtained showed that, the discounting rate have an effect 

on the discrete scheduled replacement model in determining the optimal discrete 

scheduled replacement time of a unit or component.  Also, the results showed the 

characteristics of the discrete scheduled replacement model. This paper is important to 

engineers, maintenance managers and plant management in replacing analog units at idle 

times, such as weekend, month-end or year-end.  

For further studies, one can investigate the following suggested cases: (i) this paper can 

be extended to multi-component systems; (ii) this paper can also incorporate warranty 

period; (iii) this paper can also consider the repair time of a failure not negligible.  
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