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Abstract In mathematical programming different types of cuts have been developed in 

the past to get an integer value of the decision variables. In this paper, we have developed 

a new integer cut for getting an integer solution of the fractional linear programming 

problem (FLPP). This technique allows the decision-maker to solve the formulated FLPP 

to be conveniently using the Branch and Bound approach in order to achieve the optimum 

final solution. The process of development of the integer cut is shown with sufficient 

detail and a numerical illustration is used for clarification purpose. 
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1. Introduction 

Integer arises when a linear fractional function has to be maximized on a convex 

constraint polyhedron 𝑋. Consider a maximization linear FLPP may be stated as:  
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Where 𝑥, 𝑝, 𝑑 are 𝑛 × 1 vector, b is an 𝑚 × 1 vector and 𝛼, 𝛽 are the scalar constants. It 

is assumed that the constraint 𝑆 = {𝑥: 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0} is non-empty and bounded with 

𝑝(𝑥) > 0. 
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In the recent years, FLPP has received a lot of attention. Now a day many scientists and 

researchers uses numerous methodologies to solve the FLPP in different fields and 

applications. There are several realistic optimization problem causing this interest, where 

the objectives are quotient numbers of two functions, and used to obtain the maximum 

result-cost ratio, which is used for calculating the highest efficiency ratio. FLPP 

applications include the optimization of revenue/time, revenue/cost, 

efficiency/employee ratios, current assets/production, and cost-time ratios, etc. FLPPs 

can be used to address assignment problem, carriage problem, inventory issue, delivery 

problem, tree span minimum ratio problem, max route issue, and many more. The field 

of FLPP, largely developed by Hungarian Mathematician, Martors in 1960, is considered 

with the problem of optimization. Charnes and Cooper (1962) demonstrated that the 

initial FLPP can be easily transformed into LPP by basic conversion method, and this 

methodology is very helpful, as most conceptual results produced in LP could be 

generalised reasonably easily to solve the FLPP. Some recent work on the use of FLPP 

includes,  Raina et al., (2018) used FLPP to formulate the transportation problem with 

discount cost function; similarly, Gupta et al., (2018) formulated capacitated 

transportation problem with multi-choices parameter as a FLPP; Ali et al., (2019) 

formulated the inventory model of ordering quantity as a FLPP and solved it using 

intuitionistic fuzzy goal programming; Coa (2020) formulated green supplier model as a 

FLPP and used fugitive measurement to determine the coefficient of relative proximity 

of green suppliers between intervals. 

In most of the practical situations the values of the decision variables are required to be 

integer one. Integer programming in which all the variables are limited to a value of 0 or 

1 is referred to as 0-1 integer or binary programming. Integer programming applications 

can be seen in a variety of fields such as fixed-capacitated problems, job or machine 

scheduling problems and many more, and along with a broad spectrum of real-life 

predicament problems can be presented as integer FLPP in operations, banking, social 

economics and philosophy. The general integer cutting plane algorithm initially uses the 

authenticity constraints on the variables and resolves the resultant LPP in a simpler way. 

Gomory (1958) developed the very first finite integer cut algorithm for getting the 

solution of integer LPPs. They demonstrated that, instead, a convex polyhedra can be 

specified as the conjunction of a limited number of partial spaces or convex framework 

plus the cylindrical hull of a certain number of dimensions or points. Based on this 

conjectural outcome, Gomory derived a “cutting plane” algorithm for integer LPPs. 

Dantzig (1963) also gave a new integer cutting plane technique for getting an integer 

value of the decision variable and, further this study was extended by others who worked 

on this topic are Glover(1965), Bowman(1970), Young(1971) and Balas (1973) etc.  

Combinatorial major problems, such as the problem of the budgeting of knapsack 

resources, the location of warehouses, traveling salesperson's problem, lower cost and 

network selection problems, channel and database problems such as , problems with 

flows, problems with matching solutions, weighted matching problems, problems with 

network coverage, and several scheduling issues can be addressed as integer FLPP. 

Integer FLPP have been solved by many authors in the past, Puri and Swarup (1965) 

suggested the extreme point mathematical programming technique for solving 0-1 
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integer linear programming as well as integer FLPP, Grunspan and Thomas (1973) 

presented an algorithm for solving hyperbolic integer program which reduces to solving 

a sequence of linear integer problems, Agrawal (1976) provided an integer solution to 

the FLPP by using the branch and bound technique. Hiroaki (1976) gave a primal cutting 

algorithm for solving an integer FLPP. Chandra and Chandramohan (1979) gave an 

improved technique based on branch and bound method for solving a mixed integer 

FLPP, and later on Chandra and Chandramohan (1980) suggested an advanced form of 

their previous work by considering some more limitation in the branch and bound 

method. For 0-1 FLPP with single quotient term in the objective function, Anzai (1985) 

and Thirwani and Arora (1997) solved fractional  objective functions and suggested  its 

integral optimal solution by using the ranking function approach. Sharma and Bansal 

(2011) showed an integer solution of fractional programming by using a simplex method, 

Nachammai and Thangaraj (2011) presented the solution of a fuzzy FLPP using metric 

distance ranking, they also proposed the solution of a problem by considering fuzzy 

variables (Nachammai and Thangaraj, (2012)). Seerengasamy and Jeyaraman (2013) 

proposed a new approach to solve 0-1 Integer FLPP with the help of   matrix function. 

Arefin et al., (2013) considered the additive algorithm in order to solve an integer FLPP 

class of 0-1, in which all the coefficients of an objective function  are of similarly 

characteristic. Gupta et al., (2017) developed an iterative method for solving FLPP based 

on Beal's method and concluded that in the least number of iterations the proposed 

strategy offers an optimal solution. Youness et al., (2014) proposed an algorithm in 

integrating the Taylor series approach with the Kuhn Tucker assumptions to address the 

fuzzy two-level, multifunctional integer programming problem and then applying 

Gomory cuts to achieve the integer solution. These types of problems have attracted 

considerable research and interest because of less computational time. These types of 

problems have attracted considerable research and interest because of less computational 

time. 

In this paper, we uses the NAZ-CUT developed by Bari and Ahmad (2003) for getting 

the optimum integer solution which is derived by finding the perpendicular distance from 

the integer points, which are inside the feasible region. We first find a continuous 

optimum solution by using simplex method or column simplex method then derive the 

NAZ-CUT by using the non-integer variables and add it to the constraints. After adding 

the NAZ-CUT the problem is then solved by branch and bound method. The additional 

secondary constraint (NAZ-CUT) with some key limits cuts off the infeasible space of 

the continuous solution. This cut off gives an ideal integer end point for the optimum 

existing convex solution. This means that after adding the cut, the current linear FLPP is 

now all integer FLPP. This also means that all NAZ-CUTs must proceed through at least 

one integer point which may or may be feasible. This cuts have been planned to 

dramatically reduce the total number of integer solutions in the corresponding feasible 

area. A numerical illustration is given to help explain the solution process of the method 

used. 

The paper has been organized as follows: In section 2, the necessary NAZ cut for FLPP 

has been developed; section 3 contains algorithm for solving the problem. In section 4, 
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the numerical illustration was demonstrated with a FLPP. Finally, in section 5, review of 

the solution and final conclusions are discussed. 

2. Integer cut for solving FLPP 

Given the objective function of FLPP (Bajalinov, 2003; Stancu-Minasian, 2012): 
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Where 𝑚1 ≤ 𝑚2, 𝑛1 ≤ 𝑛. Here and in what follows we suppose that 𝑑(𝑥) ≠ 0, ∀𝑥 =

(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑆,where 𝑆 denotes a feasible set or set of feasible solution defined by 

constraints. Because denominator 𝑑(𝑥) ≠ 0, ∀𝑥 ∈ 𝑆 without loss of generality we can 

assume that 𝑑(𝑥) > 0, ∀𝑥 ∈ 𝑆.In this case 𝑑(𝑥) < 0 we can multiply numerator 𝑝(𝑥) 

and denominator 𝑑(𝑥) of objective function 𝑄(𝑥) with (-1)We consider a pure integer 

FLPP in which all parameters are assumed to be integer. We start by solving the FLPP-

relaxation to get a lower bound for the minimum objective value. First we find FLPP 

relaxation and let it be 𝑥∗. If 𝑥∗ is all integer, then the problem is solved. Let the 

𝑘𝑡ℎcomponent of 𝑥∗be non-integer with value 𝑥𝑘 = 𝑎𝑘
∗  . The nearest integer value to 𝑥𝑘 

are 𝑥1
𝑘 = [𝑎𝑘

∗ ]  and 𝑎2
𝑘 = [𝑎𝑘

∗ ] + 1 = 〈𝑎𝑘
∗ 〉, 𝑘 = 1,2, … , 𝑛 .Where [𝑡]  is the largest integer 

less than or equal to t and 〈𝑡〉 is the smallest integer greater than or equal to t. With such 

bifercations we can find all the 2𝑛 integer points in the surrounding of the non-integer 

solution 𝑥∗. ( e.g. in case of two variable problem if 𝑥∗. =(1,5,2,2). then there will be 

22 = 4 integer points (1,2), (1,3), (2,2), (2,3) around this 𝑥∗. Denote the set of indices 

of these 2𝑛 points by T. Let the objective value at 𝑥∗be 𝑄∗. Thus the objective function 

level plane at 𝑥∗will be 
𝑝𝑥∗

𝑑𝑥∗ = 𝑄∗ 
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Now we find the perpendicular distance 𝑑𝑖  from the surrounding points, to the objective 

plane by using the formula  

 

 

 

Where 𝑥𝑖
0 is an integer point around 𝑥∗. Now we search for the point 𝑥𝑖

0  , which has a 

minimum distance from the objective function hyper plane. Obviously the negative 

distances and the distances from the infeasible points should be omitted. We choose the 

minimum positive distance only from the points, which are feasible. Let S be the set of 

indices 𝑖 ∈ 𝑇 for which 𝑥𝑖
0are feasible. Let, 𝑥𝑖

0 = {𝑥𝑘
0 𝑑𝑘⁄ = 𝑚𝑖𝑛𝑖∈𝑆𝑑𝑖} , we will 

introduce the NAZ CUT at 𝑥0 by using the following relationship 

0( ) ( ) ( ) ( )opx d x px dx   + + +  + + +  

 
3. Algorithm for solving the problem 

The step wise step algorithm for solving the problem is as follows: 

STEP 1: Using either simplex method or column simplex method to solve FLPP. 

STEP 2: If the obtained solution is integer, then STOP. If not, round off the non-integer 

solution to the closest integer. 

STEP 3: Find the minimum perpendicular distance from the point of integer inside the 

feasible restrictions area. Derive NAZ- CUT passing through this point and parallel to 

any of the constraints. 

STEP 4: Use branch and bound or cutting plane method for getting the optimum integer 

solution. 

4. Numerical 

This section presents an example to demonstrate the used method Subject to constraints 
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(2,1)pc = , 1 2( , )x x x=  

  (7,1)dc = , 3 4( , )sx x x=  

A = (
5 3
7 1

) 

The starting column simplex tableau is given as 

Table 1 

  
1x  2x   

Q  0 -2 -1  

p  0 -2 -1  

d  6 -3 -1  

1x  0 -1 0 - 

2x  0 0 -1 - 

3x  
6 5 3 6/5 

4x  6 7 1 6/7 

 

1 2 0 3 2 = − +  = − 2 1 0 1 1 = − +  = −  

The most negative ∆𝑖= ∆1= −2  which correspond to 𝑥1 ⇒ 𝑥1.Will become basic and 

the column corresponding to 𝑥1 will be the pivotal column. The minimum positive ratio 

of the present solution column to the pivotal column is attained corresponding to 𝑥4 ⇒

𝑥4 row will be the pivotal row.  𝑥4will become non basic and the element 7 at the 

intersection of the pivotal row and the pivotal column will be the pivotal element. The 

next iteration is obtained by 

(1) Dividing the pivotal column by -7 

(2) Applying the elimination procedure to transform the pivotal row (6, 7, 1) into 

(0,-1, 0). 

 

The subsequent tableau of the column simplex method is: 
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Table 2 

 

  
4x  2x   

Q  1/5 1/5 -3/5  

p  12/7 2/7 -5/7  

d  60/7 3/7 -4/7  

1x  6/7 1/7 1/7 6/7 

2x  0 0 -1 - 

3x  
12/7 -5/7 16/7 12/16 

4x  0 -1 0 - 

 

4

2 1 3 1

7 5 7 5
 = −  = 2

5 1 4 3

7 5 7 5

− −
 = +  =  

The most negative ∆𝑖= ∆2=
−3

5
  which correspond to 𝑥2.⇒ 𝑥2Will become basic and the 

column corresponding to 𝑥2 will be the pivotal column.The minimum positive ratio of 

the present solution column to the pivotal column is attained corresponding to𝑥3.⇒ the 

𝑥3 row will be the pivotal row. 𝑥3 will become non basic and the element 16/7 at the 

intersection of the pivotal row and the pivotal column will be the pivotal element. The 

next iteration is obtained by 

(1)   Dividing the pivotal column by -16/7 

(2) Applying the elimination procedure to transform the pivotal row  

(
12

7
,

−5

7
,

16

7
) into (0,0, −1) 

The subsequent tableau of the column simplex method is: 

Table 3 

 

  
4x  3x  

Q  1/4 0 1/4 

p  9/4 1/16 5/16 

d  9 1/4 1/4 

1x  3/4 3/16 -1/16 

2x  3/4 -5/16 7/16 

3x  
0 0 -1 

4x  0 -1 0 
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4

1 1 1
0

16 4 4
 = −  =  ,   

3

5 1 1 1

16 4 4 4
 = −  =  

Since all 0 i , the optimal continuous solution is given by  

1

3

4
x = 2

3

4
x =

1

4
Q =

 

 
 

Figure 1. Graphical presentation of the FLPP without cut 

 
Figure 2. Branch and bound of the FLPP when NAZ CUT is not added 
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But the value of  𝑥1 and 𝑥2 are not integer. So, we make them integer by using NAZ 

CUT. So we round off the integer solution to the nearest integer points (0,0), (0,1), 

(1,0),(1,1). Now use the distance formulation to measure the distance perpendicular for 

the points. 

The distance from the point (0, 0) is 
0.25 0

0.35
5
10

−
=  

The distance from the point (0, 1) is 
0.25 0.143

2.463
5
10

−
=  

The distance from the point (1, 0) is 
0.25 0.22

0.04
5
10

−
=  

The distance from the point (1, 1) is 
0.25 0.3

0.71
5
10

−
= −  

We reject those points where the distance is negative and verify that the assumptions 

upon which distance is positive are fulfilled. If the assumptions are not fulfil then discard 

that point. Now we are left with only two points which is in the feasible region of which 

we select (0, 1) as (0, 0) does not effect the feasibility of the solution. 

Now we derive NAZ CUT along with constraints passing through the integer point (0,1), 

we have 

 

5𝑥1 + 2𝑥2 ≥ 25 

 

𝑥1 ≥ 0 

 

 

𝑥1 ≥ 1 

 

 

 

(3) 

Graphical presentation of FLPP when NAZ-CUT is added to the main constraints 
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Figure 3. Graphical presentation of FLPP when NAZ cut is added 

After adding the NAZ-CUT, the number of iteration is difficult to estimate by using the 

simplex method but being an exact method like branch and bound, the computational 

time is not polynomial bounded so the new problem after adding the cut is solved by 

using a branch and bound method which gives integer solution to the problem in a quick 

time (See Figure 3). 

 
Figure 4.  Branch and bound of the FLPP when NAZ CUT is added 

By adding the NAZ-CUT to FLPP, we get the following integer solution:
 

1 0x = , 2 2x =  and 1/ 4Q =  

 

5. Conclusion 

In this paper, our main aim to develop the direct technique for solving the FLPP in fewer 

number of iterations. Here, we considered the NAZ-CUT proposed by Bari and Ahmad 

(2003) for getting an integer solution of a LPP. Most of the algorithms used to solve the 
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FLPP rely on the conventional basic technique. The algorithm that we suggested in this 

paper is based on the extension of NAZ-CUT which is used for solving the LPP. The key 

goal of creating this approach was that we didn't have to turn the FLPP into an LPP and 

it also helps to locate the feasible area using the NAZ-CUT into a series of feasible 

directions. Due to the simplicity of this method, anyone can conveniently use this 

approach to solve the FLPP to find the optimum solution. As this method consumes less 

time and it is very easy to understand and apply, it also reduces the complexity faces at 

the time of solving the problem by other integer cuts. Numerical results are often 

provided to show, that in minimum number of iterations with limited computing time 

algorithms can solve relatively large problems. In future, we will try to explore the new 

methodology for multi-objective FLPP quadratic FLPP, multi-objective quadratic FLPP.  
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