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Abstract Agricultural production can be described by discrete time as there is harvest in 

every year only once. The agricultural production is uncertain because of the weather 

and the ever changing technology. At the same time, the sector prefers stability which is 

reflected in the small changes in the prices. The uncertainty of the price may be modeled 

by a set-valued function in a single product market. The independent variable is the price 

expectation of the producer which is the future value of the price estimated by the 

producer. It can be assumed that the set-valued function is decreasing because in the case 

of higher price expectation, greater quantity appears on the market and thus the real 

market price becomes the lower. The stability of the market may require some control. 

In this paper the existence of an appropriate control to reach a target interval and to keep 

the trajectory in the interval is investigated from mathematical point of view. Necessary 

and sufficient conditions are given for the existence of the viable solution. The “striped 

structure” of the dynamical system is explored as well. 

Keywords Set-valued function; Dynamical system; Control; Target interval; Viable 

solution. 

 

1. Introduction 

This paper is devoted to the analysis of certain discrete time dynamical systems defined 

by one-dimensional set-valued functions. The main motivation is the potential 

application in economics. 

The produced quantity on arable land is uncertain because of the effect of the weather. 

The future price of a commodity is always uncertain as well, because it depends on the 

produced quantity and other factors. In most of the cases uncertainty is modeled by 
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probability, see e.g. Flåm and Kaniovski (2002). Sometimes the system changes fast way 

and therefore it is not possible to learn its probabilistic properties if they exist at all. This 

is typical for agricultural markets where the parameters of the system do not remain the 

same from one harvest to the other one because of the ever improving technology. 

Therefore in modeling such a system one may use mathematical tools different from 

probability. One such tool is the set-valued function. Kovács et al. (2002) discusses a 

dynamical system defined by a setvalued function.  

The mathematical model discussed in this paper assumes that the product in question has 

a seasonal production. Agriculture is again typical example of this. However, even 

industrial goods, e.g. jet ski and snowmobile, may have the same property. However, 

even the demand has a significant seasonal effect in the case of industrial products. For 

the sake of simplicity the market is supposed to be an agricultural one and its dynamics 

is described accordingly. It implies a smooth demand and no serious changes in the price 

during the whole time period. The change of the price takes place typically between time 

periods. 

The basic dynamics of the market from one year to the next one is discussed in general 

in the frame called cobweb model. The harvested quantity is known for producers and 

customers in each year. This is the quantity which appears on the market until the next 

harvest. The equilibrium price of the market closely related to the harvested quantity. 

The higher the quantity is the lower the price is. Assume that the farmer can produce 

several different crops. The producer estimates the market price of the next year and 

according to the estimation he decides on the use of the arable land. That means at the 

same time a decision on the quantities produced in the next year. If the estimated price 

is higher, then larger area is used for the crop. The larger area implies that higher quantity 

will be produced and if higher quantity appears on the market then the equilibrium price 

becomes smaller. The final conclusion is that the market price is a decreasing function 

of the estimated price. The strategy of the famous financial tycoon George Soros is that 

he acts in an opposite way how the expectation of the majority suggest Freeland (2009). 

This type of effective (price) expectation goes back to Keynes (1963) and Kovács et al. 

(2001). 

Generally, the methods to estimate price expectations are using only prices of the past. 

This fact leads to such phenomena. Typical cases are the adaptive price expectation of 

Nerlove (1958) and the extrapolative expectation of Szidarovszky and Molnár (1994). 

There are indications that the farmers do not estimate future prices numerically Imre and 

Tibor (1982), or make significant and skewed errors Kenyon (2001). Intensive research 

on price expectations is still going on Ahmad (2015), Dr. Agrarwissenschaften (2015), 

Kenyon (2001), Kovács et al. (2001) and Masuku et al. (2017). The price expectation 

determines the dynamic properties of the market Bacsi and Vizvári (1999). 

In this paper a new approach is discussed, which more or less faces with all of the 

aforementioned difficulties: no stochastic distribution is known although the system is 

uncertain, the estimation is not a well-defined single numeric value. The new approach 
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is to use dynamical system defined by a decreasing set-valued function as the model of 

a single commodity market. 

2. Basic Assumptions 

It is supposed that the dynamical system can be controlled. The basic properties of the 

system concerning control are summarized in seven assumptions. 

The first four assumptions are describing the system in general, the next two ones 

concern to the control, and the last one excludes some degenerate cases. 

(A1) The state of the system is a real number. 

(A2) The time is discrete and it takes its value 𝑡 from the set ℤ+ = {0.1.2. … }. 

(A3) Assume that the state of the system is 𝑥𝑡 at time 𝑡. Then the state at time 𝑡 + 1 

is an element of the set 𝐺(𝑥𝑡) if the control is switched off. 𝐺: ℝ → ℝ is a set-valued 

function and for all 𝑥 ∈ ℝ : 𝐺(𝑥) = [𝑎(𝑥). 𝑏(𝑥)], where 𝑎(⋅), and 𝑏(⋅) are real functions. 

(A4) The functions 𝑎(⋅), and 𝑏(⋅) satisfy the conditions 

1. ∀ 𝑥 ∈ ℝ: 𝑎(𝑥) ≤ 𝑏(𝑥). 

2. Both 𝑎(⋅), and 𝑏(⋅) are continuous on the whole real line. It follows that the 

set-valued function 𝐺 is continuous. 

3. Both 𝑎(⋅), and 𝑏(⋅) are strictly decreasing on the whole real line. 

(A5)  The control is an additive term, say 𝑢𝑡+1 in time 𝑡. Thus the state of the system 

in the case when control is switched on is  

𝑥𝑡+1   =   𝑥𝑡+1
′  +  𝑢𝑡+1  ∈  𝐺(𝑥𝑡)  + 𝑢𝑡+1  (1) 

 i.e. 𝑥𝑡+1
′  an element of 𝐺(𝑥𝑡), becomes known only in time period 𝑡 + 1.  

(A6) The value of the control may vary from period to period, however, it must 

belong to the interval [𝑑−.  𝑑+], where 𝑑− < 0 < 𝑑+. 

(A7) The functions  

𝑔(𝑥) = 𝑏(𝑎(𝑥) + 𝑑−) + 𝑑+, 

and  

ℎ(𝑥) = 𝑎(𝑏(𝑥) + 𝑑−) + 𝑑+ 

have only finite many fixed points. (Notice that 𝑔(𝑥) is the largest point, which might 

be reached by the trajectory at all from 𝑥 in exactly two iterations, while ℎ(𝑥) is the 

minimal point, which can be reached using control for sure in exactly two steps.) 
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Equation (1) does not define the control uniquely. It is important to distinguish two types 

of control. It is called  a priori if the control,  i.e. 𝑢𝑡+1, is determined first and after that 

𝑥𝑡+1
′  becomes known. The opposite case, when 𝑢𝑡+1 can be determined after that 𝑥𝑡+1

′  

becomes known is called  a posteriori. Notice that the controller has no way to affect 

𝑥𝑡+1
′ . In this paper the main emphasize is given to the a posteriori case. The value 𝑥𝑡+1

′  

is called the  realization of the system at time period 𝑡 + 1. 

It is also assumed that the starting point is known and it is 𝑥0. The aim of the control is 

to reach the target interval [𝑉. 𝑊] in finite many steps, and keep the system in it,  i.e. our 

goal is to give conditions for [𝑉. 𝑊] to be a viable domain by control. We suppose that 

𝑥0 < 𝑉 < 𝑊. 

The following notation is used. Let 𝑓 be an arbitrary real function. Then  

𝑓+(𝑥) = 𝑓(𝑥) + 𝑑+, and 𝑓−(𝑥) = 𝑓(𝑥) + 𝑑−. 

The theorems use the combinations of the two extreme realizations 𝑎(𝑥), 𝑏(𝑥) and the 

two extreme control 𝑑−, 𝑑+. For example 𝑎−(𝑥) means the minimal autonomous growth 

𝑎(𝑥) and the minimal control 𝑑−. 

Then the functions 𝑔, and ℎ in Assumption (A7) can be written in the following short 

form:  

𝑔(𝑥) = 𝑏+(𝑎−(𝑥)), and ℎ(𝑥) = 𝑎+(𝑏−(𝑥)). 

It is easy to see, that both 𝑔 and ℎ are strictly increasing. 

3. On the Existence of Trajectories 

There are cases when the goal of the control cannot be achieved. Therefore, the first issue 

to be discussed is the existence of the desired trajectories. 

Theorem 1. No controlled trajectory can enter into the [𝑉. +∞) interval in finite many 

steps if and only if 𝑏+(𝑥0)  <  𝑉 and there exists a point  

𝑦 ∈ [𝑚𝑖𝑛{𝑥0. 𝑏+(𝑥0)}. 𝑉] 

such that 𝑔(𝑦)  ≤  𝑦. 

Proof.  The necessity of the inequality 𝑏+(𝑥0)  <  𝑉 is obvious. The possible maximal 

value of a trajectory in step 1 is 𝑏+(𝑥0). Thus if the inequality does not hold then any 

trajectory, which has this value at step 1 enters the target interval. 

In general we determine the possible maximal and minimal values of the trajectories at 

step 𝑡. 

(a) If 𝑡 = 0 then the only possible value is 𝑥0  <  𝑉. 
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(b) If 𝑡 = 1 then  

𝑥1  ∈  𝐺(𝑥0) + [𝑑−.  𝑑+]  =  [𝑎(𝑥0) + 𝑑−.  𝑏(𝑥0) + 𝑑+]  =  [𝑎−(𝑥0). 𝑏+(𝑥0)]. 

(c) Let 𝑡 ≥ 2. At time 𝑡 the system has the state 𝑥𝑡. The minimal and maximal value 

where the trajectory can step from it are 𝑎−(𝑥𝑡) and 𝑏+(𝑥𝑡), respectively. Hence it 

follows from the strictly monotone decreasing property of the functions 𝑎(⋅), and 𝑏(⋅) 

that we obtain the possible absolute minimal (maximal) value for 𝑥𝑡 if 𝑥𝑡−1 is the possible 

absolute maximal (minimal) value at step 𝑡 − 1. It means that if 

𝑥2   ∈   [𝑎−(𝑏+(𝑥0)). 𝑏+(𝑎−(𝑥0))]   =   [𝑎−(𝑏+(𝑥0)). 𝑔(𝑥0)] 

and 

𝑥3   ∈   [𝑎−(𝑔(𝑥0)). 𝑏+(𝑎−(𝑏+(𝑥0)))]   =   [𝑎−(𝑔(𝑥0)). 𝑔(𝑏+(𝑥0))] 

and in general for even 𝑡, say 𝑡 = 2𝑘, 

𝑥2𝑘   ∈   [𝑎− (𝑔𝑘−1(𝑏+(𝑥0))) . 𝑔𝑘(𝑥0)]. 

and for odd 𝑡, say 𝑡 = 2𝑘 + 1, 

𝑥2𝑘+1   =   [𝑎−(𝑔𝑘(𝑥0)). 𝑔𝑘(𝑏+(𝑥0))]. 

For even values of 𝑡 the possible absolute maximal values of the trajectories are  

𝑥0. 𝑔(𝑥0). … . 𝑔𝑘(𝑥0). … . 

This sequence is defined by the recursive equation 

𝑣0  =  𝑥0.      𝑣𝑘  =  𝑔(𝑣𝑘−1). 

First assume that the function 𝑔(⋅) does not have a fixed point. If for all real number 𝑧 

the inequality 𝑧 > 𝑔(𝑧) holds then the sequence is strictly decreasing and converges to 

−∞. Thus the trajectory is unable to enter the target interval, and at the same time the 

necessary and sufficient condition given in the statement holds. If the opposite inequality,  

i.e. 𝑧 < 𝑔(𝑧), holds for all real numbers, then the sequence is strictly increasing and 

converges to +∞. Thus the trajectory enters the target interval and the necessary and 

sufficient condition does not hold. If 𝑔(⋅) has at least one fixed point then there are the 

following cases: 

(i) 𝑥0 itself is a fixed point and the sequence is constant. 

(ii) All of the fixed points are strictly less than 𝑥0. If 𝑔(𝑥0) < 𝑥0 then the sequence 

decreasing and converges to the maximal fixed point 𝑥𝑓
max < 𝑥0 and never enters the 

target interval. At the same time 𝑥0 is appropriate for the value 𝑦 of the statement. If 

𝑔(𝑥0) > 𝑥0 then the sequence is increasing and converges to +∞ and the appropriate 

value 𝑦 does not exists. 
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(iii) All fixed points are strictly greater than 𝑥0. If 𝑔(𝑥0) < 𝑥0 then the sequence 

decreasing and converges to −∞. Again 𝑦 = 𝑥0 is a good choice. If 𝑔(𝑥0) > 𝑥0 then the 

sequence is increasing and converges to the minimal fixed point 𝑥𝑓
min > 𝑥0. If 𝑥𝑓

min > 𝑉 

then the sequence enters the target interval and appropriate 𝑦 does not exist. If 𝑥𝑓
min ≤ 𝑉 

then the sequence does not reach the target interval in finite many steps and 𝑦 = 𝑥𝑓
min. 

(iv) 𝑥0 is between two fixed points, say 𝑥𝑓
𝑙  and 𝑥𝑓

𝑢, such that 𝑥𝑓
𝑙 < 𝑥0 < 𝑥𝑓

𝑢 and there is 

no other fixed point in the interval [𝑥𝑓
𝑙 . 𝑥𝑓

𝑢]. Then the trajectory converges to 𝑥𝑓
𝑙  if 

𝑔(𝑥0) < 𝑥0 and 𝑦 = 𝑥0 is a good choice. If 𝑔(𝑥0) > 𝑥0 then the sequence converges to 

𝑥𝑓
𝑢. If 𝑥𝑓

𝑢 ≤ 𝑉 then the trajectory does not enter the target interval in finite many cases 

and 𝑦 = 𝑥𝑓
𝑢 is a good choice. Otherwise,  i.e. if 𝑥𝑓

𝑢 > 𝑉, the trajectory enters the target 

interval and no appropriate 𝑦 exists. 

Hence one can obtain the conclusion that the trajectory cannot enter the target interval in 

even numbered steps if and only if the statement is true. 

For odd values of 𝑡 the sequence is  

𝑏+(𝑥0). 𝑔(𝑏+(𝑥0)). … . 𝑔𝑘(𝑏+(𝑥0)). … 

If 𝑏+(𝑥0) ≥ 𝑉 then there are trajectories entering the target interval. If 𝑏+(𝑥0) < 𝑉 then 

the proof is similar to the case of even 𝑡’s. 

The next theorem discusses the viability of the interval [𝑉. ∞]. The proof provides us 

with the necessary control, too. 

Theorem 2. In the a posteriori case it is possible to choose the control for all trajectories 

such that the trajectory enters the interval [𝑉. +∞] in finite many steps and it stays there 

forever if and only if 

∀ 𝑦 ∈ [𝑥0. 𝑉]: ℎ(𝑦)  >  𝑦         𝑎𝑛𝑑         𝑉  ≤   𝑎+(𝑉).  (2) 

Proof. First assume that (2) holds. Then an appropriate control is  

𝑢𝑡+1   =   {

min{𝑑+. 𝑉 − 𝑥𝑡+1
′ }  𝑖𝑓   𝑥𝑡+1

′ ≤ 𝑉

  
max{𝑑−. 𝑉 − 𝑥𝑡+1

′ }  𝑖𝑓   𝑥𝑡+1
′ > 𝑉.

  (3) 

Notice that 𝑢𝑡+1 is determined such that if  

𝑉 − 𝑑+  ≤  𝑥𝑡+1
′  ≤  𝑉 − 𝑑− 

then 𝑥𝑡+1 becomes 𝑉. Outside this interval 𝑢𝑡+1 controls the trajectory with maximal 

possible speed toward 𝑉. 

It follows from the strictly decreasing property of function 𝑎(⋅), and the condition (2), 

and the inequality 𝑥0 < 𝑉 that 
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𝑉 ≤  𝑎+(𝑉)  <  𝑎+(𝑥0). 

Hence starting from 𝑥0 the first point of the trajectory,  i.e. 𝑥1, is at least 𝑉. It can be 

greater than 𝑉 only if 𝑥1
′ > 𝑉 − 𝑑−. In that case, (3) requires the application of the 

possible minimal control. Thus 𝑥1 must be an element of the interval  

[𝑉. max{𝑉. 𝑏−(𝑥0)}]. 

The minimal value of 𝑥2 is obtained if 𝑥1 has its maximal value,  i.e. max{𝑉. 𝑏−(𝑥0)}, 

and the realization 𝑥2
′  is minimal when the maximal control can be applied. Hence 

𝑥2   ≥   𝑎+(max{𝑉. 𝑏−(𝑥0)})   =   min{𝑎+(𝑉). ℎ(𝑥0)}   ≥   min{𝑉. ℎ(𝑥0)}. 

Similarly, the maximal value of 𝑥2 is obtained from the minimal value of 𝑥1 with the 

maximal realization. Then it follows from the control (3) that  

𝑥2 ≤ max{𝑉. 𝑏−(𝑉)}. 

In a similar way, one can conclude that 𝑥3 ≥ min{𝑉. ℎ(𝑉)}. In general 

𝑥2𝑘   ≥   min{𝑉. ℎ𝑘(𝑥0)}       and       𝑥2𝑘+1   ≥   min{𝑉. ℎ𝑘(𝑉)}. 

If ℎ(𝑦)  >  𝑦 holds for all 𝑦 ∈ [𝑥0. 𝑉] then any trajectory of the form  

𝑦. ℎ(𝑦). … . ℎ𝑘(𝑦). … 

must converge either to +∞ or a fixed point of ℎ(⋅) greater than 𝑉. Hence the trajectory 

with control (3) enters the target interval [𝑉. +∞] in finite many steps. 

At time 𝑡 the system is at state 𝑥𝑡. There is a unique control such that the system will 

have the greatest possible state at time 𝑡 + 2: at time 𝑡 + 1 the smallest possible value 

must be applied,  i.e. 𝑑−, and at time 𝑡 + 2 the greatest possible one,  i.e. 𝑑+. The worst 

case of the realizations is 𝑏(𝑥𝑡) at time 𝑡 + 1, and 𝑎(𝑥𝑡+1). Thus the greatest state what 

can be guaranteed at time 𝑡 + 2 is ℎ(𝑥𝑡). If there is a 𝑦 ∈ [𝑥0. 𝑉] such that ℎ(𝑦) ≤ 𝑦 then 

it follows from the previous theorem that the [𝑉. +∞) interval cannot be reached from 

𝑥0 in finite many steps. 

If the interval [𝑉. ∞] is not viable then the target interval [𝑉. 𝑊] cannot viable either. 

The next theorem gives the necessary and sufficient conditions of the viability of the 

target interval. 

Theorem 3. In the a posteriori case it is possible to choose the control for all trajectories 

such that the trajectory enters the [𝑉. 𝑊] interval in finite many steps and it stays there 

forever if and only if there exist a value 𝑉0 ∈ [𝑉. 𝑊] such that  

∀𝑦 ∈ [𝑥0. 𝑉0]: ℎ(𝑦) > 𝑦.     𝑎𝑛𝑑     𝑉0 ≤ 𝑎+(𝑉0).     𝑎𝑛𝑑     𝑏−(𝑉0) ≤ 𝑊.  (4) 

Proof. It follows from the previous theorem that if (4) holds then all trajectories can be 

controlled such that they enter the [𝑉0. +∞) interval and stays in it forever. Assume that 
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control (3) is applied with 𝑉 = 𝑉0 and the trajectory just entered the interval [𝑉0. +∞),  

i.e. 𝑥𝑘 < 𝑉0 if 𝑘 < 𝑡. Then it follows from the decreasing property of function 𝑏(⋅) and 

the definition of control (3) that 𝑥𝑡+1 is at most 𝑏−(𝑉0). 

Assume in an indirect way that 𝑉0 does not exists, however, for every trajectory there is 

a control such that the trajectory enters the interval [𝑉. 𝑊] and stays there forever. Then 

it follows from the previous theorem that for all 𝑦 ∈ [𝑥0. 𝑉] the inequalities ℎ(𝑦) > 𝑦, 

and 𝑉 ≤ 𝑎+(𝑉) hold. Then the indirect assumption is only true if 𝑏−(𝑉) > 𝑊. As the 

trajectory does not leave the interval [𝑉, 𝑊] for every 𝑥𝑡 ∈ [𝑉. 𝑊] and for every 

realization of 𝐺(𝑥𝑡) there must be a control such that 𝑥𝑡+1 ≤ 𝑊. As 𝑏(⋅) is decreasing it 

is necessary that 𝑏−(𝑊) ≤ 𝑊. Hence there is a unique 𝑊𝑏− ∈ [𝑉. 𝑊] such that 

𝑏−(𝑊𝑏−) = 𝑊 and 𝑊𝑏− > 𝑉. Here we distinguish two cases: 

Case 1: ∀ 𝑦 ∈ [𝑉. 𝑊𝑏−]: ℎ(𝑦) > 𝑦. Hence 

𝑊𝑏−  <  ℎ(𝑊𝑏−)  =  𝑎+(𝑏−(𝑊𝑏−))  =  𝑎+(𝑊)  ≤  𝑎+(𝑊𝑏−). 

Then it follows from the equation 𝑏−(𝑊𝑏−) = 𝑊 that 𝑊𝑏− satisfies the properties that 

are claimed from 𝑉0 in the statement.  

Case 2: ℎ(𝑊𝑏−) ≤ 𝑊𝑏−. Then there is at least one fixed point of function ℎ(⋅) in the 

interval (𝑉. 𝑊𝑏−]. Let 𝑥ℎ.𝑓 be the minimal among these fixed points. The function ℎ(⋅) 

gives the possible maximal value of the state in every second steps. Let 𝑡 be iteration 

when the state of the trajectory is at least 𝑉. Let us consider the sequence  

{ℎ−1(𝑥𝑡). 𝑥𝑡 . 𝑥𝑡+2 = ℎ(𝑥𝑡). 𝑥𝑡+4 = ℎ(𝑥𝑡+2). … }. 

It is the trajectory of a dynamic system defined by the (single-valued) function ℎ(⋅) and 

started from ℎ−1(𝑥𝑡). The starting point exist as function ℎ(⋅) is strictly increasing. A 

trajectory cannot stay in a fixed point unless it starts from the fixed point itself. Hence 

the elements of the sequence are never equal to 𝑥ℎ.𝑓 just only converge to it. Then the 

trajectory may have a state strictly greater than 𝑊 in every second step if the realization 

are provided alternatively from functions 𝑎(⋅), and 𝑏(⋅). 

It is not necessary that a trajectory can reach the whole line. In certain cases, the 

trajectories determine a striped structure of the line as the following theorem shows. 

Theorem 4. Assume that 𝑥0 ∈ [ℎ𝑙 . ℎ𝑢], where the values ℎ𝑙 and ℎ𝑢 are two consecutive 

fixed points of function ℎ. Let 𝑝𝑙 = 𝑏−(ℎ𝑙) and 𝑝𝑢 = 𝑏−(ℎ𝑢). Assume that  

ℎ𝑙 < ℎ𝑢 < 𝑝𝑢 < 𝑝𝑙. 

Then there is a control for all trajectories that the trajectory does not leave the interval 

[ℎ𝑙 . 𝑝𝑙]. 

Remarks.  It follows from the relation ℎ𝑙 < ℎ𝑢 and the decreasing property of the 

functions that 𝑝𝑢 < 𝑝𝑙 . The equations ℎ𝑙 = 𝑎+(𝑝𝑙) and ℎ𝑢 = 𝑎+(𝑝𝑢) are immediate 

consequences of the assumption that ℎ𝑙 and ℎ𝑢 are fixed points of the function ℎ. 
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Proof. The realization 𝑥1
′  is in the interval [𝑎(𝑥0). 𝑏(𝑥0)]. It follows from the 

decreasing property of the functions that 𝑏(𝑥1
′ ) ≤ 𝑏(ℎ𝑙) and 𝑎(𝑥1

′ ) ≥ 𝑎(ℎ𝑢). Notice 

that 

𝑝𝑢 = (𝑏−)−1(ℎ𝑢). 

As function ℎ(⋅) is strictly monotone increasing we have the inequality: 

ℎ(𝑥0) ≤ ℎ(ℎ𝑢) = ℎu. 

Hence 

𝑎+(𝑏−(𝑥0)) ≤ ℎ(ℎ𝑢) = 𝑎+(𝑏−(ℎ𝑢)) = ℎ𝑢. 

By using again the monotone decreasing property of function 𝑎+(⋅) one obtains that 

𝑏−(𝑥0) ≥ 𝑏−(ℎ𝑢) = 𝑝𝑢. 

Similarly, 

𝒉𝒍 = 𝒉(𝒉𝒍) = 𝒂+(𝒃−(𝒉𝒍)) ≤ 𝒉(𝒙𝟎) = 𝒂+(𝒃−(𝒙𝟎)). 

It follows from here that  

𝑏−(ℎ𝑙) = 𝑝𝑙 ≥ 𝑏−(𝑥0). 

Thus 𝒙𝟏 can be kept in the interval [𝒉𝒍. 𝒑𝒍]. Then it can be proven with the same method 

that 𝒙𝟐 can be kept in the interval [𝒉𝒍. 𝒑𝒍], etc. 

Remarks. If the trajectory enters the interval [ℎ𝑢. 𝑝𝑢] then it can be kept even in this 

interval. Otherwise in every odd step it is in [𝑝𝑢 . 𝑝𝑙] and in every even step in [ℎ𝑢 . 𝑔𝑢]. 

The theorem does not exclude that the trajectory enters the interval [ℎ𝑢. 𝑝𝑢]. If it does so 

and within the interval there is a similar structure, then the trajectory can kept in an even 

narrower region. On the other hand if the realization 𝑥′𝑡 is always 𝑎(𝑥𝑡−1) if 𝑡 is even 

and 𝑏(𝑥𝑡−1) if t is odd then there are two cases. If ℎ𝑢 is an attractive fixed point of 

function ℎ(⋅),  i.e. for all 𝑧 ∈ (ℎ𝑙 . ℎ𝑢) the inequality ℎ(𝑧) > 𝑧 holds, then trajectory with 

the control used in the proof converges to the interval [ℎ𝑢 . 𝑝𝑢] in the sense that 

lim
𝑘→∞

𝑥2𝑘+1   =   𝑝𝑢.       and       lim
𝑘→∞

𝑥2𝑘   =   ℎ𝑢 . 

In the case if ℎ𝑢 is a repelling fixed point,  i.e. for all 𝑧 ∈ (ℎ𝑙 . ℎ𝑢) the inequality ℎ(𝑧) <

𝑧 holds, then 

lim
𝑘→∞

𝑥2𝑘+1   =   𝑝𝑙 .       and       lim
𝑘→∞

𝑥2𝑘   =   ℎ𝑙 . 

If the condition ℎ𝑢 < 𝑝𝑢 does not hold then there are several cases and their discussion 

is omitted. 

Example. Let 𝑎(𝑥) = −𝑥3 − 1, 𝑏(𝑥) = −𝑥3 + 1, 𝑑− = −1, and 𝑑+ = 0.5. Then  
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ℎ(𝑥) = 𝑎(𝑏(𝑥) + 𝑑−) + 𝑑+ = 𝑥9 − 0.5. 

The three real fixed points of ℎ(𝑥) are −0.904, −0.502, and 1.05. Let ℎ𝑙 = −0.904 and 

ℎ𝑢 = −0.502, then 𝑝𝑙 = 𝑏−(ℎ𝑙) = 0.739 and 𝑝𝑢 = 𝑏−(ℎ𝑢) = 0.127. 

If 𝑥0 ∈ [−0.904; −0.520] then  

𝑥′1 ∈ [𝑎(−0.502); 𝑏(−0.904)] = [−0.873; 1.739]. 

Thus 𝑥1 can be kept in [ℎ𝑙 . 𝑝𝑙] = [−0.904; 0.739]. 𝑥2 can be kept in this interval with 

same method, too. 

Moreover, if 𝑥𝑘 ∈ [ℎ𝑢 . 𝑝𝑢] = [−0.502; 0.127] then  

𝑥′𝑘+1 ∈ [𝑎(0.127); 𝑏(−0.502)] = [−1.002; 1.127]. 

Thus 𝑥𝑘+1 can be kept in [ℎ𝑢. 𝑝𝑢]. 

For all 𝑧 ∈ (ℎ𝑙 . ℎ𝑢) the inequality ℎ(𝑧) > 𝑧 holds (𝑧9 − 0.5 > 𝑧), ie. ℎ𝑢 is an attractive 

fixed point of function ℎ(⋅), then trajectory with the control used in the proof converges 

to the interval [ℎ𝑢. 𝑝𝑢].  

4. Conclusions 

Production on arable land is one of the main sectors of agriculture. It is a process which 

can be described by discrete time as there is harvest every year only once with a few 

exceptions. An important parameter of the market is the market price which is 

determined by the harvested amount. If high future price is expected, then produced 

quantity will be higher as more farmers having suitable technology choose the crop in 

question to produce in the next season. High quantity on the market implies low future 

price. Thus, the market can be described by a decreasing function. Another important 

property of agricultural production is that it is uncertain. As the number of observations 

is very limited, it is difficult to determine the probabilistic distribution of the future 

harvested amount which depends not only on the random effect of the weather but also 

the price expectation and the ever changing technology. Therefore, set-valued functions 

are used as the mathematical tool for modelling the uncertainty.  

The paper deals with a one-dimensional dynamical system described by an inclusion. It 

has all necessary properties to model the above-mentioned agricultural market. The set-

valued function is decreasing. The model also contains a control variable. The meaning 

of the control variable is a quantity which still appear on the market, like import, if the 

value of the variable is positive, or is withdrawn to a reserve if the value of the control is 

negative. The paper discusses the a posteori control when the harvested amount is known 

and the value of the control is determined accordingly. 

Two types of results are important as follows: (a) what are the condition for the existence 

of a control such that the trajectory of the system reaches a target interval, (b) what are 

the condition for the existence of a control such that the trajectory can be kept in the 



On the control of a dynamical system…                                                              33 

 

© 2018 The Authors. 

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran 

target interval. The latter one called viability result. Theorem 1 belongs to category (a). 

Theorems 2, 3, and 4 belong to both categories (a), and (b). 

In the future a priori control can be analyzed as well. The extension of the model to a 

multi-dimensional case is also possible.  
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