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Abstract In this paper, we restrict our attention to the efficient frontier of the BCC 

model, where the BCC model is a well-known basic model in Data Envelopment 

Analysis (DEA). We here assume that each Decision Making Unit (DMU) has one input 

and one output. In order to obtain BCC efficient frontier, the paper proposes a 

polynomial-time algorithm of complexity bonded by O(n3) to produce well-behaved 

affine functions. The produced functions are then used to determine a point-wise 

minimum of a finite number of affine functions. It will be shown that by finding this 

function, we in fact also determine the efficient frontier of the BCC model. The main 

advantage of this approach is ability to achieve the efficient frontier, without solving a 

mathematical programming problem. Also, all of the Pareto efficient DMUs, as BCC-

efficient DMUs, can be easily obtained using the proposed algorithm. A numerical 

example is presented to explain the use and effectiveness of the proposed algorithm. 

Keywords Data envelopment analysis; BCC model; Efficient frontier; Point-wise 

minimum; Pareto efficient DMUs. 

 

1. Introduction 

Data envelopment analysis (DEA), introduced by Charnes et al. (1978) is a non-

parametric approach to measure the relative efficiency score of a decision making unit 

(DMU). A collection T of pairs (𝑥. 𝑦), where 𝑥 = (𝑥1. … . 𝑥𝑚) is a vector of quantities of 

m inputs and 𝑦 = (𝑦1. … . 𝑦𝑠) is a vector of quantities of s outputs, is an empirical 

production set with the property  that the input x can produce the output y. Based on 

inputs and outputs of the units, DEA forms an empirical efficient frontier. In this regard, 

because of the identification of the nature of returns to scale (RTS), investigating the 

strong defining hyperplanes of the empirical production possibility set (PPS) is an 

https://doi.org/10.7232/aotp.2017.16.1.001


60                                        Ann Opt The Prac (AOTP), 2018, Vol. 1, No. 1 

 

© 2018 The Authors. 

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran 

important task. Also, efficient hyperplanes can be used for determining rates of change 

of outputs with change in inputs. 

The investigation of the efficient frontier and the identification of the strong defining 

hyperplanes of the PPS are frequently encountered in the literature in the DEA context; 

but, to our knowledge, only few of the existing works in DEA have been written on this 

subject. One of the first papers extended to search the efficient frontier in DEA was an 

article by Yu et al. (1996), where the authors analyzed the construction of all DEA 

efficient frontiers in generalized data envelopment analysis. Also, searching of the 

efficient frontier in DEA has been considered by Korhonen (1997). Jahanshahloo et al. 

(2005) tried to find the piecewise linear frontier of the production function which 

identifies the efficient frontier DMUs in DEA. In addition, an approach for finding strong 

defining hyperplanes of PPS in DEA has been suggested by Jahanshahloo et al. (2007). 

Furthermore, an alternative approach for determining these hyperplanes was proposed 

by Jahanshahloo et al. (2009). Amirteimoori and Kordrostami (2012) proposed a method 

for generating all linearly independent strong defining hyperplanes of the PPS passing 

through a specific DMU. Lotfi et al. (2011) suggested a method for finding efficient 

hyperplanes with variable returns to scale the technology in DEA by using the multiple 

objective linear programming (MOLP) structure. 

This paper, tries to determine the efficient frontier of the BCC model Banker et al. 

(1984), without solving a mathematical programming problem. We here assume that 

each DMU has one input and one output. In order to obtain BCC efficient frontier, the 

paper proposes a polynomial-time algorithm of complexity bonded by O(n3) to produce 

well-behaved affine functions. The produced functions are then used to determine a 

point-wise minimum of a finite number of affine functions. It will be shown that by 

finding this function, we in fact also determine the strong defining hyperplanes of PPS. 

All of the BCC-efficient DMUs can be easily obtained using the proposed algorithm. 

The rest of the paper is organized as follows: In the next Section, some basic concepts 

on PPS and the structure of its defining hyperplanes are reviewed. The third Section of 

the paper tries to propose a new algorithm for finding all efficient hyperplanes. In order 

to explain the details of the proposed approach, a numerical example is solved in fourth 

Section. Finally, the last section of the paper submits our concluding observations and 

further directions. 

2. Preliminaries 

In this section, we intend to describe the structure of the PPS and its strong defining 

hyperplanes. Toward this, we present some basic definitions, models and concepts that 

will be used in the next sections. Most of them are taken from Cooper et al. (2006). 

The notation (𝑥𝑗 . 𝑦𝑗) is employed for the observed vectors of the input and output, 

respectively, for the 𝐷𝑀𝑈𝑗  (1 ≤ 𝑗 ≤ 𝑛). The empirical PPS 𝑇𝑣, defined to be the convex 

hull of these observed points, is stated as follows: 

𝑇𝑣 = {(𝑥. 𝑦) |𝑥 ≥ ∑ 𝜆𝑗𝑥𝑗

𝑛

𝑗=1

. 𝑦 ≤ ∑ 𝜆𝑗𝑦𝑗

𝑛

𝑗=1

. ∑ 𝜆𝑗

𝑛

𝑗=1

= 1. 𝜆𝑗 . 𝑗 ∈ {1. … . 𝑛}. 𝑥 ∈ ℝ𝑚. 𝑦 ∈ ℝ𝑠 } 
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𝑇𝑣 is constructed axiomatically and it is a closed and convex set. A DMU is efficient if 

it lies on the frontier of 𝑇𝑣; otherwise, it is inefficient. 𝐷𝑀𝑈𝑂 ∈ 𝑇𝑣 is said to be extremely 

efficient in 𝑇𝑣 if and only if it is an extreme efficient point in 𝑇𝑣. 

Consider the following (BCC) fractional programming problem for evaluating the 

relative efficiency score of 𝐷𝑀𝑈𝑂 (𝑂 ∈ {1. 2. … . 𝑛}): 

𝑀𝑎𝑥 
𝑢𝑦𝑂 + 𝑢𝑂

𝑣𝑥𝑂

  

(1) 
subject to  
𝑢𝑦𝑗 + 𝑢𝑂

𝑣𝑥𝑗

≤ 1 (𝑗 = 1. 2. … . 𝑛) 

𝑢 ≥ 0, 𝑣 ≥ 0, 𝑢𝑂 free.  

The foregoing problem can be equivalently rewritten as follows: 

𝑀𝑎𝑥 𝑢𝑦𝑂 + 𝑢𝑂  

(2) 

subject to  

𝑣𝑥𝑂 = 1  

𝑢𝑦𝑗 − 𝑣𝑥𝑗 + 𝑢𝑂 ≤ 0  

𝑢 ≥ 0, 𝑣 ≥ 0, 𝑢𝑂 free.  

This problem is referred to as the multiplier form of the input-oriented BCC model 

Cooper et al. (2006). 

Definition 1. If a DMU is BCC-efficient, then it is called Strong Efficient (Pareto 

efficient). 

Definition 2. Let (𝑥. 𝑦) ∈ 𝑇𝑣. A hyperplane H = {(𝑥̅. 𝑦̅)|𝑢(𝑦 − 𝑦̅) − 𝑣(𝑥 − 𝑥̅) = 0. 𝑢 ≥
0. 𝑣 ≥ 0} is called a supporting hyperplane of 𝑇𝑣 at (𝑥̅. 𝑦̅) ∈ H if for each (𝑥̅. 𝑦̅) ∈ 𝑇𝑣, 

𝑢(𝑦 − 𝑦̅) − 𝑣(𝑥 − 𝑥̅) ≤ 0. 

A collection of vectors 𝑍1. 𝑍2. … . 𝑍𝑘 of dimension n is called affine independent if {𝑍2 −
𝑍1. … . 𝑍𝑘 − 𝑍1} is linear independent Murty (1983). 

Definition 3. A hyperplane H is a strong defining hyperplane of 𝑇𝑣 if it is supporting and 

there exists at least one affine independent set with 𝑚 + 𝑠 elements of strongly efficient 

DMUs that lie on H. 

3. The proposed Algorithm 

At this moment, we are ready to propose a new algorithm for finding the frontiers of the 

BCC model by the results which we intend to discuss soon. Toward this end, suppose 

there are 𝑛 DMUs: DMU1, DMU2,…, DMU𝑛, each with one input and one output, i.e., 

DMU𝑗 = (𝑥𝑗 . 𝑦𝑗) for every 1 ≤ 𝑗 ≤ 𝑛. In the next step, we sort the DMUs according to 

increasing input value. That is, we sort the DMUs in such a way that DMU1 has the 

smallest input value and DMU𝑛 has the largest one. If there are two or more DMUs with 

the same input value, then keep just the DMU with the largest output value among all 

such DMUs and discard others from the process.  
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Remark 1: To be noted in the foregoing discussion is the fact that from the sorted list of 

the DMUs and as we keep just the DMU with the largest output value among all DMUs 

with the same input value and discard others from the process, 𝑥𝑗 − 𝑥𝑙 is positive and 

bounded away from zero for all 𝑙 + 1 ≤ 𝑗 ≤ 𝑛, where 𝑙 ∈ {1. 2. … . 𝑛}. That is the 

condition 𝑥𝑗 − 𝑥𝑙 > 0 always holds true. 

Now, let indices 𝑙. 𝑝. 𝑞 ∈ {1. … . 𝑛} be such that 𝑙 ≤ 𝑝 ≤ 𝑞, and let, for these indices, we 

have the following expressions: 

𝐶𝑡 =
𝑦𝑝 − 𝑦𝑙

𝑥𝑝 − 𝑥𝑙

= max {0. max
𝑙+1≤𝑗≤𝑛

{
𝑦𝑗 − 𝑦𝑙

𝑥𝑗 − 𝑥𝑙

}} ≥ 0 

(3) 

𝐶𝑡+1 =
𝑦𝑞 − 𝑦𝑝

𝑥𝑞 − 𝑥𝑝

= max {0. max
𝑝+1≤𝑗≤𝑛

{
𝑦𝑗 − 𝑦𝑝

𝑥𝑗 − 𝑥𝑝

}} ≥ 0 

Remark 2: From Remark 1, we know that the denominator in the above formulas is 

positive and bounded away from zero. Therefore, based on the formulas in (3), we have 

𝑦𝑝 − 𝑦𝑙

𝑥𝑝 − 𝑥𝑙

≥
𝑦𝑞 − 𝑦𝑝

𝑥𝑞 − 𝑥𝑝

 (4) 

The first formula in (3) can be used to obtain a hyperplane passing through DMU𝑙 and 

DMU𝑝, as follows: 

(𝑦 − 𝑦𝑙) = 𝐶𝑡(𝑥 − 𝑥𝑙) =
𝑦𝑃 − 𝑦𝑙

𝑥𝑝 − 𝑥𝑙

(𝑥 − 𝑥𝑙) 

In other words, this hyperplane can be expressed by the equation 

H: (𝑥𝑝 − 𝑥𝑙)(𝑦 − 𝑦𝑙) − (𝑦𝑃 − 𝑦𝑙)(𝑥 − 𝑥𝑙) = 0 

or 

H: (𝑥𝑝 − 𝑥𝑙)𝑦 − (𝑦𝑃 − 𝑦𝑙)𝑥 + 𝑥𝑙𝑦𝑃 − 𝑥𝑝𝑦𝑙 = 0 

More specifically, if we let 

𝑢∗ = (𝑥𝑝 − 𝑥𝑙), 𝑣∗ = (𝑦𝑃 − 𝑦𝑙) and 𝑢𝑂
∗ = 𝑥𝑙𝑦𝑃 − 𝑥𝑝𝑦𝑙  (5) 

then the hyperplane H: 𝑢∗𝑦 − 𝑣∗𝑥 + 𝑢𝑂
∗ = 0 is a hyperplane passing through DMU𝑝 and 

DMU𝑙. Similarly, the second formula in (3) can be used to obtain a hyperplane passing 

through DMU𝑝 and DMU𝑞. 

From the foregoing discussion, we intend to show that the hyperplane 𝑢∗𝑦 − 𝑣∗𝑥 + 𝑢𝑂
∗ =

0 is a strong defining hyperplane of 𝑇𝑣. Toward this end, it is necessary to show that H: 

𝑢∗𝑦 − 𝑣∗𝑥 + 𝑢𝑂
∗ = 0 is supporting and strong. Regarding this subject, we have the 

following two theorems. 

Note that in the evaluation of DMU𝑂 (𝑂 ∈ {1. 2. … . 𝑛}), if (𝑢∗. 𝑣∗. 𝑢𝑂
∗ ) is an optimal 

solution to Model (2), then 𝑢∗𝑦 − 𝑣∗𝑥 + 𝑢𝑂
∗ = 0 is a supporting hyperplane Cooper et 
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al. (2006) on the PPS. Under this assumption, the supporting condition can be 

equivalently expressed in terms of the optimal solution of Model (2) as follows: 

Theorem 1: Let the hyperplane H: 𝑢∗𝑦 − 𝑣∗𝑥 + 𝑢𝑂
∗ = 0 be a hyperplane passing 

through DMU𝑙 and DMU𝑝, where (𝑢∗. 𝑣∗. 𝑢𝑂
∗ ) is given by Equation (5). Then, in the 

evaluation of DMU𝑙 and DMU𝑝, the solution (𝑢∗. 𝑣∗. 𝑢𝑂
∗ ) is an optimal solution to the 

model (2). 

Proof. We only prove the assertion for DMU𝑙. The other case can be easily deduced as a 

similar manner. First of all, we must show that (𝑢∗. 𝑣∗. 𝑢𝑂
∗ ) is a feasible solution to the 

model (2). Since the model (2) is a reformulated form of the model (1), we prove this 

using Model (1). The sign restrictions on the decision variables 𝑢∗ ≥ 0, 𝑣∗ ≥ 0 can be 

easily deduced from Remark 1. Hence, it is sufficient to show that 
𝑢∗𝑦𝑗+𝑢𝑂

∗

𝑣∗𝑥𝑗
≤ 1, for each 

𝑗 = 1. 2. … . 𝑛. On the one hand, from two formulas in (3) and the expression in (4), the 

following inequality holds for each 𝑙 + 1 ≤ 𝑗 ≤ 𝑛 under the assumptions 𝑙 ∈ {1. … . 𝑛} 

and 𝑙 ≤ 𝑝: 

𝑦𝑃 − 𝑦𝑙

𝑥𝑝 − 𝑥𝑙

≥
𝑦𝑗 − 𝑦𝑙

𝑥𝑗 − 𝑥𝑙

 (6) 

On the other hand, from Remark 1, we have 𝑥𝑗 − 𝑥𝑙 > 0, for each 𝑗 ∈ {1. … . 𝑛}. 

Therefore, we can equivalently rewrite (6) as follows: 

(𝑦𝑃 − 𝑦𝑙)(𝑥𝑗 − 𝑥𝑙) ≥ (𝑥𝑝 − 𝑥𝑙)(𝑦𝑗 − 𝑦𝑙) 

or 

(𝑦𝑃 − 𝑦𝑙)𝑥𝑗 − (𝑦𝑃 − 𝑦𝑙)𝑥𝑙 ≥ (𝑥𝑝 − 𝑥𝑙)𝑦𝑗 − (𝑥𝑝 − 𝑥𝑙)𝑦𝑙  

and so we have 

(𝑦𝑃 − 𝑦𝑙)𝑥𝑗 ≥ (𝑥𝑝 − 𝑥𝑙)𝑦𝑗 + 𝑥𝑙𝑦𝑃 − 𝑥𝑝𝑦𝑙  

Therefore, the expressions in (5) imply that 𝑢∗𝑦𝑗 + 𝑢𝑂
∗ ≤ 𝑣∗𝑥𝑗, for each 𝑗 ∈ {1. … . 𝑛}. 

This yields 

𝑢∗𝑦𝑗 + 𝑢𝑂
∗

𝑣∗𝑥𝑗

≤ 1 

In order to prove that (u∗. v∗. uO
∗ ) is indeed optimal, we must show that 

𝑢∗𝑦𝑙+𝑢𝑂
∗

𝑣∗𝑥𝑙
= 1. 

Toward this end, from (5), we can write 

𝑢∗𝑦𝑙 + 𝑢𝑂
∗

𝑣∗𝑥𝑙

=
(𝑥𝑝 − 𝑥𝑙)𝑦𝑙 + 𝑥𝑙𝑦𝑃 − 𝑥𝑝𝑦𝑙

(𝑦𝑃 − 𝑦𝑙)𝑥𝑙

=
(𝑦𝑃 − 𝑦𝑙)𝑥𝑙

(𝑦𝑃 − 𝑦𝑙)𝑥𝑙

= 1 

This completes the proof. 
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It is worthwhile to note that the theorem is true, in general, for each point on the line 

segment joining DMU𝑙 and DMU𝑝, i.e., for any convex combination of the two points. 

Theorem 2: The hyperplane H: 𝑢∗𝑦 − 𝑣∗𝑥 + 𝑢𝑂
∗ = 0 is the strong defining hyperplane 

of 𝑇𝑣. 

Proof. It is obvious from the previous discussion and from the theorem 1 that the 

hyperplane is supporting. Therefore, it is sufficient to show that there exists at least one 

affine independent set with 𝑚 + 𝑠 elements of strongly efficient DMUs that lie on H. 

Note here that because of the single input and single output case, 𝑚 + 𝑠 is equal to 2. On 

the one hand, since (𝑦𝑃 − 𝑦𝑙) > 0 and (𝑥𝑝 − 𝑥𝑙) > 0, so from the fact that 

{(𝑥𝑙 . 𝑦𝑙) − (𝑥𝑝. 𝑦𝑝)} ≠ {(0.0)} one can conclude that DMU𝑙 and DMU𝑝 are affine 

independent. On the other hands, we know from Theorem 1 and Definition 1 that DMU𝑙 

and DMU𝑝 are strongly efficient DMUs that lie on H.  

The following corollaries are immediately concluded from Theorems 1 and 2.  

Corollary 1. DMU𝑙 and DMU𝑝 are extreme efficient DMUs and any activity (𝑥𝑗 . 𝑦𝑗) on 

the line segment joining DMU𝑙 and DMU𝑝 is strongly (BCC) efficient . 

Corollary 2. The functions 𝑓𝑡(𝑥) = 𝐶𝑡(𝑥 − 𝑥𝑙) + 𝑦𝑙  are the strong defining hyperplanes 

of 𝑇𝑣. If the number of these functions is equal to ℎ, then the function 𝑓(𝑥) =
𝑚𝑖𝑛

1≤𝑡≤ℎ
{𝑓𝑡(𝑥)} (𝑥 ∈ 𝑅), is the frontier of the BCC model. 

Remark 2: It will be noted that the functions 𝑓𝑡(𝑥) (1 ≤ 𝑡 ≤ ℎ), are affine functions. 

This implies that 𝑓(𝑥), is the point-wise minimum of a finite number of affine functions 

(see, for example Murty (1983)). 

The foregoing discussion suggests a constructive algorithm for actually describing the 

frontier of the BCC model in terms of no more than n observed activities, using a number 

of elementary computational operations such as additions, comparisons and also a finite 

number of affine functions, which are bounded above by a polynomial in 𝑛 of degree ≤
3. That is, it suggests a polynomial-time algorithm of complexity bounded by 𝑂(𝑛3) to 

obtain such a description, as follows: 

An algorithm for finding the efficient frontier of the BCC model: 

Input: n, 

      DMUs: DMU1, DMU2, …, DMU𝑛 each with one input and one output, i.e., 

DMU𝑗 = (𝑥𝑗 . 𝑦𝑗) for every 1 ≤ 𝑗 ≤ 𝑛. 

Step 0: Sort the DMUs in such a way that DMU1 has the smallest input value and 

DMU𝑛 has the largest one. If there are two or more DMUs with the same input value, 

then keep just the DMU with the largest output value among all such DMUs and 

discard others from the process. 

Step 1: Set 𝑠0 = 1, 𝑙 = 𝑠0, 𝑡 = 1 and go to the next step. 

Step 2: Let 𝐶𝑡 = max {0. max
𝑙+1≤𝑗≤𝑛

{
𝑦𝑗−𝑦𝑙

𝑥𝑗−𝑥𝑙
}}, and determine the function 
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𝑓𝑡(𝑥) = 𝐶𝑡(𝑥 − 𝑥𝑙) + 𝑦𝑙  

Step 3: Let 𝑠𝑡 (𝑙 + 1 ≤ 𝑠𝑡 ≤ 𝑛) be the largest index such that coordinates of DMU𝑠𝑡
, 

i.e., (𝑥𝑠𝑡
. 𝑦𝑠𝑡

) satisfy 𝑓𝑡(𝑥). 

If either 𝑠𝑡 = 𝑛 or else 𝐶𝑡 = 0, then go to the next step. Otherwise, set 𝑡 = 𝑡 + 1, 𝑙 =
𝑠𝑡 and return to the previous step. 

Step 4: Suppose that the number of function 𝑓𝑡(𝑥) is equal to ℎ, in step 3. After re-

indexing the functions, if necessary, let 

𝑓(𝑥) = min
1≤𝑡≤ℎ

{𝑓𝑡(𝑥)} . 𝑥1 ≤ 𝑥 ≤ 𝑥𝑠𝑚
 (𝑥 ∈ 𝑅) 

Output: The frontiers of the BCC model 

From the fact that the slope of the affine functions are strictly decreasing and also owing 

to the finite number of DMUs, the validity of the algorithm is obvious. 

It is clear that, if we use this new algorithm, then all of the Pareto efficient DMUs, as 

well as the efficient frontier of the BCC model, can be obtained without solving a 

mathematical programming problem according to Steps 1 and 3 of the algorithm. 

We can modify the algorithm to determine the efficient frontier of the CCR model, which 

is defined as follows Cooper et al. (2006).  

𝑀𝑎𝑥 𝑢𝑦𝑂  

(7) 

subject to  

𝑣𝑥𝑂 = 1  

𝑢𝑦𝑗 − 𝑣𝑥𝑗 ≤ 0  

𝑢 ≥ 0, 𝑣 ≥ 0  

In other words, with the following slight modification, the proposed algorithm can be 

used to obtain the efficient frontier of the CCR model. 

A slight modification of the proposed algorithm for finding the efficient frontier 

of the CCR model: 

Input: n, 

      DMUs: DMU1, DMU2, …, DMU𝑛 each with one input and one output, i.e., 

DMU𝑗 = (𝑥𝑗 . 𝑦𝑗) for every 1 ≤ 𝑗 ≤ 𝑛. 

Step 1: Let 𝐶 = max {0. max
1≤𝑗≤𝑛

{
𝑦𝑗−0

𝑥𝑗−0
}}, and determine the function 

𝑓(𝑥) = 𝐶𝑥 

Step 2: Let 𝑠 (1 ≤ 𝑠 ≤ 𝑛) be the index such that coordinates of DMU𝑠, i.e., (𝑥𝑠. 𝑦𝑠) 

satisfy 𝑓(𝑥). Then, DMU𝑠 is a CCR-efficient DMU. 

Output: The frontiers of the CCR model as 𝑓(𝑥) = 𝐶𝑥   (𝑥 ∈ 𝑅) 

 

 



66                                        Ann Opt The Prac (AOTP), 2018, Vol. 1, No. 1 

 

© 2018 The Authors. 

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran 

4. Numerical example 

In this section, in order to show how the proposed approach can successfully be used to 

determine the frontiers of the CCR and BCC models, we apply the new algorithm to the 

following simple example from Cooper et al. (2006) and comment on the results. For 

this purpose, we use Table 1, which shows 8 DMUs with 1 input and 1 output. We label 

the DMUs from A to H at the head of each column in Table 1.  

Table 1. Data of the example. 

DMU A B C D E F G H 

Input 2 3 3 4 5 5 6 8 

Output 1 3 2 3 4.5 2 3 5 

i) The identification of the efficient frontier of the BCC model: 

From the step 0 of the proposed algorithm, we sort the DMUs according to increasing 

input value as shown in Table 2. Since the DMUs B and C have the same input value, 

then we keep just B with the largest output value 3 and discard C from the process. This 

is also done for the DMUs E and F with the same input value. Therefore, after re-indexing 

the DMUs, we have Table 2. 

Table 2. Modified data of the example. 

DMU 𝐷𝑀𝑈1 𝐷𝑀𝑈2 𝐷𝑀𝑈3 𝐷𝑀𝑈4 𝐷𝑀𝑈5 𝐷𝑀𝑈6 

Input 2 3 4 5 6 8 

Output 1 3 3 4.5 3 5 

Step 1: 𝑠0 = 1, 𝑙 = 1, 𝑡 = 1. 

Step 2: 𝐶1 = max {0. max {
3−1

3−2
.

3−1

4−2
.

4.5−1

5−2
.

3−1

6−2
.

5−1

8−2
}} = {0. max {2.1.

7

6
.

1

2
.

3

2
} = 2 

𝑓1(𝑥) = 2(𝑥 − 2) + 1 = 2𝑥 − 3 

Step 3: Since 𝑠1 = 2 ≠ 8, we set 𝑡 = 2, 𝑙 = 2 and return to the previous step. 

Step 2: 𝐶2 = max {0. max {
3−3

4−3
.

4.5−3

5−3
.

3−3

6−3
.

5−3

8−3
}} =

3

4
 

𝑓2(𝑥) =
3

4
𝑥 +

3

4
 

Step 3: Since 𝑠2 = 4 ≠ 8, we set 𝑡 = 3, 𝑙 = 4 and return to the step 2. 

Step 2: 𝐶3 = max {0. max {
3−4.5

6−5
.

5−4.5

8−5
}} =

1

6
 

𝑓3(𝑥) =
1

6
𝑥 +

11

3
 

Step 3: Since 𝑠3 = 8, we go to the next step. 

Step 4: We have the following function as the efficient frontier of the BCC model: 
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𝑓(𝑥) = min{2𝑥 − 3.
3

4
𝑥 +

3

4
.
1

6
𝑥 +

11

3
} . 2 ≤ 𝑥 ≤ 8 (𝑥 ∈ 𝑅) 

As depicted in figure 1, the DMUs A, B, E and H are extreme efficient DMUs and so 

they are strongly BCC-efficient. 

ii) The identification of the efficient frontier of the CCR model: 

Using the slightly modified algorithm, one can determine the efficient frontier of the 

CCR as follows. 

Step 1: 𝐶 = max {0. max {
1

2
.

3

3
.

2

3
.

3

4
.

4.5

5
.

2

5
.

3

6
.

5

8
}} = 1. Then, as can be easily seen in 

figure 1, the efficient frontier of the CCR model is 𝑓(𝑥) = 𝑥. Also, Figure 1 gives B as 

the only CCR-efficient DMU. 

 

Figure 1. The Efficient Frontier of the CCR and BCC models in the given example. 

5. Conclusions 

One of the main concerns in DEA is trying to obtain the efficient frontier of the 

production possibility set. However, in the literature, there are few studies on the subject 

of finding this efficient frontier. In this paper, we have tried to determine the frontiers of 

the BCC model. Here, it has been assumed that each DMU has one input and one output. 

In order to obtain BCC efficient frontier, the paper proposes a new algorithm to produce 

well-behaved affine functions. The produced functions are then used to determine a 

point-wise minimum function. It has been shown that by finding this function, we in fact 

also determine the efficient frontier of the BCC model. All of the Pareto efficient DMUs, 

as BCC-efficient DMUs, can be easily obtained using proposed algorithm, without 

solving a mathematical programming problem. A numerical example has been presented 

to explain the use and effectiveness of the proposed algorithm. 
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Authors hope that the proposed approach can arouse more interest in this research. They 

believe that the generalization of the proposed algorithm to the case of multiple-inputs 

and multiple-outputs can be an interesting subject for further researches. 
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