

Annals of Optimization Theory and Practice

Volume 1, Number 3, 15-32

November 2018

DOI: 10.22121/aotp.2019.148030.1015

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

Local search based meta-heuristic algorithms for

optimizing the cyclic flexible manufacturing cell

problem

Béla Vizvári1
 . Hüseyin Güden2 . Mazyar Ghadiri Nejad3

1 Department of Industrial Engineering, Eastern Mediterranean University, Mersin 10, Turkey

2 Department of Industrial Engineering, Eastern Mediterranean University, Mersin 10, Turkey

3 Department of Industrial Engineering, Girne American University, Mersin 10, Turkey

 vizvaribela@gmail.com

(Received: June 8, 2018/ Accepted: August 3, 2018)

Abstract Flexible robotic cells are used in many real-life industries to produce

standardized items at a high production speed. These cells use high-tech and expensive

machines. Determining the schedules of these cells for the most efficient usage arises as

an important optimization problem in those industries. In this study, the scheduling

problem of a flexible robotic cell is considered. Machines are identical and parallel. In

the cell, there is an input and an output buffer wherein items being processed and the

finished items are kept, respectively. There is a robot performing the loading/unloading

operations of the machines and transporting the items. The system repeats a cycle in its

run. It is assumed that each machine processes one part in each cycle. The cycle time

depends on the order of the loading/unloading activities. Therefore, determining the

order of these activities for the minimum cycle time is needed. We propose a new

mathematical model to solve the problem. For large size problems, three metaheuristic

algorithms based on local search algorithm are proposed. In the metaheuristics, in order

to compute the minimum cycle time of a given solution a linear programming model is

needed to be solved which is one of the recent cases in the literature to the best of our

knowledge. Several numerical examples are solved by the proposed algorithms and their

performance and solutions are compared.

Keywords Scheduling; Flexible manufacturing system; Robotic cell; Metaheuristic

1. Introduction

Flexible manufacturing cells containing a number of CNC machines are controlled by an

automated control system, and the materials can be handled by robots between the

machines Nejad et al. (2018b). Such cells are widely used in many real-life industries

https://doi.org/10.7232/aotp.2017.16.1.001

16 Ann Opt The Prac (AOTP), 2018, Vol. 1, No. 3

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

such as chemical, electroplating and metal cutting industries to have a high

standardization and to increase the efficiency.

In this study, there is a cell containing a number of parallel and identical CNC machines

located on a line to process identical items. There is also an input buffer at the beginning

of the line wherein the items to be processed are kept and an output buffer at the end of

the line wherein the finished items are stored. A robot transports the items in the system

and loads/unloads the machines, and a computer controls the robot. A system with two

machines is illustrated in Figure 1.

Figure 1. A robotic cell.

Cell manufacturing indicates a connective system among product oriented and process

oriented systems. Using a robot in such cells helps the system to produce standardized

items at a high production speed Caramia and Mari (2017). The considered system

repeats a cycle in its long run. Each machine should be loaded once in a cycle. If the

system is in a particular state at the beginning of a cycle, it reaches the same state at the

end of the cycle and then repeats the same actions in the same order in the subsequent

cycles. The duration of a cycle is called cycle time. Decreasing the cycle time in such a

system means increasing the production rate. The cycle time depends on the order of the

loading, unloading activities by the robot. In such a system, determining the order of

these activities to minimize the cycle time or to maximize the production rate arises as

an optimization problem.

Gultekin et al. (2009) presented a mathematical model for the problem and expressed

that the problem is NP-hard. In the present study, we first propose a new mathematical

model and compare it with their model. Then, we present metaheuristic algorithms, such

as local search (LS), stochastic local search (SLS) and adaptive local search (ALS), to

solve the larger problems. When some metaheuristics are desired to be developed for

solving the problem it is noticed that even the order of the activities are known it is not

trivial to compute the minimum cycle time. For a given solution, i.e., the order of the

activities, in order to compute the minimum cycle time a linear programming model is

needed to be solved. The reason for such a need is explained in the following sections.

 Local search based meta-heuristic algorithms for… 17

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

Finally, we analyze the performances of the proposed metaheuristics using several

numerical instances.

This article is organized as follows: in the next section, the related literature is reviewed.

Definition and formulation of FMC problems for identical parts and parallel machines

are presented in Section 3. Section 4 provides the related information to develop

metaheuristic algorithms including representation of the solution, generating initial

solution, objective function computations, generating the next solution, stopping criteria

and parameter settings. Section 5 includes experimental results of the small- and large-

size problems and gap analysis for very large-size problems. Finally, Section 6 contains

a discussion and conclusion of the study.

2. Related literature

Being a pioneer research group, Sethi et al. (1992) dealt with a robotic cell intending to

maximize the long-run average throughput of the system. Their problem was related to

producing a single part using two or three machines in a centered-layout robotic cell.

Crama (1997) presented a dynamic programming model aimed to produce identical parts

by using in-line layout robotic cells. Using this approach, Crama and Van de Klundert

(1999) found a shortest cyclic schedule for the robot moves. In addition, they proved that

when there are three machines in a cell, the minimum long-run average cycle time is

achieved by the one-unit cycle. Brauner and Finke (2001) focused on an m-machine cell,

and by employing an algebraic approach, proved that when identical parts are produced,

the optimality of a one-unit cycle is valid only for two or three machine-cells but not

more. Abdekhodaee et al. (2004) considered an FMC with parallel machines. They

scheduled two-operation and non-preemptable jobs with equal processing and set up

times. Dawande et al. (2005) considered the one-unit cycle of a cell with multiple robots

including a single and dual gripper and presented a lower bound for its cycle time.

Gultekin et al. (2008) suggested a new cycle better than all classical robot move cycles

reported in the literature for two-machine cells. Moreover, they showed that a robot-

centered layout reduces the cycle time compared to an in-line layout, and found an

optimal number of machines to minimize the cycle time of m-machine cells. In another

study based on the traveling salesman problem, Gultekin et al. (2009) presented a

mathematical formulation to determine the minimum cycle time for a parallel machine

cell considering a general case. Jolai et al. (2012) studied a robotic cell scheduling

problem with identical part types when machines are flexible and able to swap. They

determined all 1-unit cycle times and proposed a novel cycle for robot movements that

dominates all robot move cycles in the literature. Yildiz et al. (2012) proposed two pure

cycles and showed that these two cycles jointly dominate all other pure cycles for a wide

range of the processing times. They also presented the worst case for minimizing the

cycle time.

Foumani and Jenab (2012) dealt with one-unit cycles for line layout robotic cells and

presented a robot move sequence that minimizes the cycle time. They also presented the

optimality regions when all parts meet the first machine twice and determined the

18 Ann Opt The Prac (AOTP), 2018, Vol. 1, No. 3

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

optimality conditions for different cycles when each part meets both the machines twice.

They carried out the sensitivity analysis for both cases and found the best and the worst

cycles mathematically. These two researchers extended this work to m-unit pure cycles

when the robot is able to swap Foumani and Jenab (2013). They presented a lower bound

and introduced a pure cycle that always dominates the others. Ghadirinejad and

Mosallaeipour (2013) considered a flexible robotic cell containing two CNC machines

and tried two find the best activity order for the robot to minimize the cycle time when

the machines have individual input and output buffers. Kim et al. (2013) studied the

cyclic scheduling problem in a condition when the robot was enriched with a dual-armed

cluster tool. They identified the suitable conditions in that the conventional backward

and swap sequences yield minimum cycle time. They also proposed two heuristic

scheduling strategies and compared them with the conventional scheduling methods.

Jiang et al. (2014) applied two heuristics to minimize the makespan of a job scheduling

problem. They considered a two-machine system where the machines are parallel and

identical and the machines are loaded/unloaded by a server.

Recently, Mosallaeipour et al. (2018b) studied on a three-machine cell with a mobile

robot for producing carton boxes. They aimed to facilitate the decision-makers to

determine and utilize the optimal robot activity order schedule according to the

characteristics of their problem. Ghadiri Nejad et al. (2018) dealt with the scheduling of

a multi-machine robotic cell producing identical parts. Without considering individual

buffers for the machines, they tried to maximize the throughput of the system in the long

run utilizing a metaheuristic algorithm. Moreover, Nejad et al. (2018c) considered a bi-

objective scheduling problem of a flexible robotic cell to minimize the cyclic production

cost of the cell. They proposed a mathematical model and developed an NSGAII for

large-sized problems.

In the recent publications, metaheuristic algorithms have been utilized to solve different

type of problems such as solving facility location problems Shavarani et al. 2018, the

assembly line balancing problems Nejad et al. (2018a), the cutting problems

Mosallaeipour et al. (2018a), the emergency response time problems Ghadiri Nejad and

Banar (2018), the cost minimization of renewable energy generation Vatankhah Barenji

et al. (2018) and etc.

In this study, we consider a flexible manufacturing cell including m parallel machines

wherein each of them produces only one part in each cycle. Furthermore, the robot

moving time between any two machines is equal and all the loading and unloading times

are considered constant. Moreover, we propose three metaheuristic algorithms to solve

the problem for the large-size cases.

3. Problem definition and formulation

Let the number of the machines in the considered flexible robotic cell, explained in the

introduction, is m. The process time of a part on a machine is p. The loading activity of

machine i (Li) consists of picking, transferring, and loading a part from the input buffer

to the machine i. The unloading activity of machine i (Ui) includes getting the processed

 Local search based meta-heuristic algorithms for… 19

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

part from machine i, and transferring and putting it into the output buffer. Note that the

robot stays beside machine i at the end of Li and it stays beside the output buffer at the

end of any unloading activity. A cycle time is the duration time from the starting of the

system from a specific state and returning to the same state. Each machine may be loaded

or emptied at the beginning of the cycle. During a cycle, each machine must be loaded

and unloaded only once. Let L is the set of loading activities, U is the set of unloading

activities, and A is the set of all loading and unloading activities.

Let ε be the loading/unloading time of each machine and each buffer, and δ be the robot

travel time between the input buffer and the first machine, between two consecutive

machines, and between the last machine and the output buffer. dab in the following

formula gives the time between the completion time of activity and completion time of

activity b when activity b follows activity a. Let’s activity b is an unloading activity; if

the robot finishes activity and the process on machine j has not been completed then

activity b cannot be started. In such a case, the robot must wait until finishing the process

on machine j. Note that dab does not contain this uncertain amount of waiting time.



























ii

ji

ji

ji

ji

ab

UbLapim

jiUbLajmji

LbUajm

UbUajm

LbLaji

d

 and if)1(2

 , and if)1|(|2

 and if)1(2

 and if)1(22

 and if)(2











Since the robot performs the same order of activities in a cycle, to prevent permutation

and have a fixed cycle, we consider L1 as the first activity. Thus, the time from L1 to the

next L1 is the cycle time (T) and the problem is to determine the order of all loading and

unloading activities to minimize T. The decision variables employed in this study are as

follows:

T: cycle time

ta: completion time of activity 𝑎𝜖𝐴






otherwise0

activity follows activity if1 ab
xab






otherwise0

 precedes if1 ii
i

UL
z

The mathematical model of the problem is the following:

Minimize T (1)

subject to

20 Ann Opt The Prac (AOTP), 2018, Vol. 1, No. 3

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

𝑡𝐿𝑗
≥ 𝑡𝐿𝑖

+ 𝑑𝐿𝑖𝐿𝑗
𝑥𝐿𝑖𝐿𝑗

− (1 − 𝑥𝐿𝑖𝐿𝑗
) 𝑀 ∀ 𝑖, 𝑗 = 1, … , 𝑚, 𝑖 ≠ 𝑗, 𝑗 ≠ 1 (2)

𝑡𝐿𝑗
≥ 𝑡𝑈𝑖

+ 𝑑𝑈𝑖𝐿𝑗
𝑥𝑈𝑖𝐿𝑗

− (1 − 𝑥𝑈𝑖𝐿𝑗
) 𝑀 ∀ 𝑖, 𝑗 = 1, … , 𝑚, 𝑗 ≠ 1 (3)

𝑡𝑈𝑖
≥ 𝑡𝐿𝑖

+ 𝑑𝐿𝑖𝑈𝑖
− (1 − 𝑧𝑖)𝑀 ∀ 𝑖 = 1, … , 𝑚 (4)

𝑡𝑈𝑖
≥ (𝑡𝐿𝑖

− 𝑇) + 𝑑𝐿𝑖𝑈𝑖
− 𝑀𝑧𝑖 ∀ 𝑖 = 1, … , 𝑚 (5)

𝑡𝑈𝑖
≤ 𝑡𝐿𝑖

+ 𝑀𝑧𝑖 ∀ 𝑖 = 1, … , 𝑚 (6)

𝑡𝐿𝑖
≤ 𝑡𝑈𝑖

+ (1 − 𝑧𝑖)𝑀 ∀ 𝑖 = 1, … , 𝑚 (7)

𝑡𝑈𝑖
≥ 𝑡𝑙 + 𝑑𝑙𝑈𝑖

𝑥𝑙𝑈𝑖
− (1 − 𝑥𝑙𝑈𝑖

)𝑀 ∀ 𝑙 𝜖 𝐴 − 𝑈𝑖 (8)

𝑇 ≥ 𝑡𝑙 + 𝑑𝑙𝐿1
𝑥𝑙𝐿1

 ∀ 𝑙 𝜖 𝐴 − 𝐿1 (9)

∑ 𝑥𝑎𝑏

𝑏

= 1 ∀ 𝑎, 𝑏𝜖 𝐴, 𝑎 ≠ 𝑏 (10)

∑ 𝑥𝑎𝑏

𝑎

= 1 ∀ 𝑎, 𝑏𝜖 𝐴, 𝑎 ≠ 𝑏 (11)

𝑥𝑎𝑏 ∈ {0,1}
∀𝑎, 𝑏 ∈ 𝐴; 𝑧𝑖 ∈ {0,1}, ∀𝑖; 𝑡𝑎 ≥ 0,

∀ 𝑎 ∈ 𝐴
(12)

The objective function aims to minimize the cycle time which is depicted by Equation

(1). Constraint (2) considers all cases that the robot loads on two different machines

consecutively as LiLj. Constraint (3) is related to the cases where an unloading activity

is followed by a loading activity. Constraint (4) is related to the loading activities that

are followed by an unloading activity. Equation (5) describes all cases where the loading

of a machine was done in the previous cycle. If 𝑧𝑖 = 1 then the loading of machine i is

followed by an unloading of the same machine in the same cycle and 𝑡𝑈𝑖
≥ 𝑡𝐿𝑖

. The

opposite must be true as well, i.e., if 𝑧𝑘 = 0 then 𝑡𝐿𝑘
≥ 𝑡𝑈𝑘

, which is shown by

constraints (6) and (7). The next constraint helps to calculate all the completion times of

the unloading activities. To calculate the cycle time, it needs to add the moving duration

time of the robot from the last position to the input buffer plus the time of getting a part

from the input buffer and loading it to machine 1, which is done by considering constraint

(9). Constraints (10) and (11) are the classical assignment constraints that guarantee that

each activity is performed by the robot. Finally, Equation (12) defines the decision

variables. It must be mentioned that to prevent cycle permutation like 𝐿1𝐿2𝑈1𝑈2 and

𝑈2𝐿1𝐿2𝑈1, it is assumed that the cycle starts when machine 1 is loaded (𝑡𝐿1
= 0). M is a

large number which is at least as great as the cycle time.

4. Developed metaheuristic algorithms

Since the robotic flexible cell problems belong to NP-hard class of problems, optimizer

software like CPLEX can only find the optimal solutions of small-size problems.

Therefore, in order to solve large-size problems, the local search algorithm which is one

of the most efficient metaheuristic algorithms is used. This algorithm explores the search

 Local search based meta-heuristic algorithms for… 21

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

space to find better solutions without doing a further investigation Sevkli and Aydin

(2007).

4.1. Representation

In our study, a solution is presented by an array having 2m elements in which the

numbers 1 to m correspond to the loading of the first machine to the mth machine and

the numbers m+1 to 2m correspond to the unloading of the first machine to the mth

machine, respectively. To prevent permutations, the first element of each array is always

1. For example, a four-machine flexible cell having a cycle 𝐿1𝐿3𝐿4𝑈2𝑈3𝑈1𝑈4𝐿2𝐿1 is

presented in Figure 2.

Figure 2. Presentation of a 𝐿1𝐿3𝐿4𝑈2𝑈3𝑈1𝑈4𝐿2𝐿1cycle for a four-machine flexible cell.

In this array, 1 is the first element and depicts 𝐿1. 𝐿3 and 𝐿4 are shown by 3 and 4

respectively. Since in this example 𝑚 = 4, all unloading activities are shown by 5 to 8;

𝑈2 and 𝑈3 are shown by 6 and 7, respectively. The same procedure is applied to

demonstrate the rest of this array.

4.2. Initial solution

An initial solution can be a predefined solution like cycle L1L2…LmU1U2…UmL1 (its

array is shown in Figure 3 and discussed in Section 4.1), or it can be based on an iterative

construction. For example, after loading the first machine, the activity that has the lowest

robot moving time from the previously assigned activity among the remaining activities

is selected until the cycle is complete.

Figure 3. The array of L1L2…LmU1U2…UmL1 cycle.

After some preliminary experiments and testing different initial solutions in practice, to

avoid considering a unique initial solution as the starting point of the algorithms,

generating a random initial solution was selected. Generating random solutions helps to

start from different initial solutions in each run that avoids entrapment in a local

optimum.

4.3. Computing cycle time for a given solution

For finding the objective value of each array, all of the parameters, except waiting times,

are known. Let's consider the cycle of 𝐿1𝐿3𝐿4𝑈2𝑈3𝑈1𝐿2𝑈4𝐿1, assuming that

22 Ann Opt The Prac (AOTP), 2018, Vol. 1, No. 3

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

loading/unloading times are 1, the robot move time between a pair of two consecutive

machines is 2 and all processing times are the same and equal to 80 time units. To

calculate the cycle time in this case, the duration time between a set of two activities is

calculated by using dab formula in Section 3. For example, the duration time formula for

𝐿1𝐿3 is 2𝜀 + 4𝛿, which is equal to 10 time units. By applying the same procedure,

duration times of 𝐿3𝐿4, 𝐿4𝑈2, 𝑈2𝑈3, 𝑈3𝑈1, 𝑈1𝐿2, 𝐿2𝑈4 and 𝑈4𝐿1 are calculated as 16,

12, 10, 18, 16, 8 and 14, respectively.

To compute waiting times, return time to each machine must be compared with its

corresponding processing time. If the processing time is greater than the return time, the

waiting time is positive, otherwise, 0. There are two cases that should be considered; if

loading of a machine occurs before unloading of the same machine in a cycle, like the

machine 1 in this example. In this case, the summation of the duration between a set of

two activities from loading a machine to return to the same machine to unload it in

addition to the potential waiting times should be considered. For example, the return time

to machine 1 is the summation of the times for completing any two consecutive activities

from L1 to U3 plus the robot traveling time from U3 to reach beside machine 1, which

are 𝐿1𝐿3 + 𝐿3𝐿4 + 𝐿4𝑈2 + 𝑈2𝑈3 + 4𝛿 = 56, plus potential robot waiting time on

machine 2 and machine 3. Since as mentioned in Section 3, before each unloading

activity, a positive robot waiting time may exist. Consequently, the robot waiting time

on machine 1 is equal to 𝑚𝑎𝑥{0, 𝑝1 − (56 + 𝑤2 + 𝑤3)}.

On the other hand, if unloading a machine is before loading the same machine in a cycle,

like machine 2 in our example, the return time to the machine is the sum of durations

from loading that machine to the end of the cycle, i.e., the loading of machine 1, and

from loading machine 1 to return to the same machine to unload it in the next cycle.

Obviously, potential waiting times should also be considered if there is any. For example,

to calculate the return time to machine 2, at first, two cycles can be considered

consecutively (see Figure 4). Then, the duration from the first loading of machine 2 to

when the robot is ready to unload it, plus 𝑤4 is the return time to machine 2, which is

equal to 52+𝑤4. Therefore, 𝑤2 = 𝑚𝑎𝑥{0, 𝑝2 − (52 + 𝑤4)}.

Figure 4. Return time to machine 2 in 𝐿1𝐿3𝐿4𝑈2𝑈3𝑈1𝐿2𝑈4𝐿1 cycle

Applying the same procedure leads us to reach to the waiting times for machines 3 and

4 equal to 𝑤3 = 𝑚𝑎𝑥{0, 𝑝3 − (32 + 𝑤2)} and 𝑤4 = 𝑚𝑎𝑥{0, 𝑝4 − (60 + 𝑤1 + 𝑤2 +

𝑤3)} respectively. Therefore, 𝑇 = 10 + 16 + 12 + 10 + 18 + 16 + 8 + 14 + 𝑤1 +

𝑤2 + 𝑤3 + 𝑤4 = 104 + 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4.

 Local search based meta-heuristic algorithms for… 23

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

Since the aim is to minimize cycle time, the minimal amount of the total waiting times

must be computed. On the other hand, increasing in any waiting time will affect other

waiting times that are related to. Therefore, a linear programming model should be solved

to minimize the cycle time. The linear programming model of our example is as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇 = 104 + 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4

subject to

𝑤1 ≥ 𝑝1 − (56 + 𝑤2 + 𝑤3)

𝑤2 ≥ 𝑝2 − (52 + 𝑤4)

𝑤3 ≥ 𝑝3 − (32 + 𝑤2)

𝑤4 ≥ 𝑝4 − (60 + 𝑤1 + 𝑤2 + 𝑤3)

𝑤𝑖 ≥ 0 ∀ 𝑖 = 1, 2, 3, 4

where all the processing times are known and must be substituted before solving the

model.

4.4. Generating the next solution

To generate a new solution for the next generation, three different methods based on

local search algorithm are considered. The local search algorithm generates

neighborhood solutions and tries to find the local optimums, iteratively Mjirda et al.

(2014). Since this method accepts only a better solution as the current solution, it always

modifies the last improved solution. In this study, three different operators that are the

shift, swap, and reverse are employed. Figure 5 shows the shift operator for the robot

move sequence in a four-machine cell which removes one of the activities from the

sequence and moves it to another place in the sequence, randomly.

Figure 5. Shift operator.

The swap operator finds two activities randomly and switches them together (see Figure

6).

24 Ann Opt The Prac (AOTP), 2018, Vol. 1, No. 3

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

Figure 6. Swap operator.

The reverse operator selects two activities, which are not next to each other, and reverse

all the activities among them as it can be seen in Figure 7.

Figure 7. Reverse operator.

In the proposed local search algorithm, shift, swap, and reverse operators are iteratively

used in order to find a neighborhood solution. The pseudocode of this method is

presented by Algorithm 1. This algorithm executes Imax iterations (lines 5–15). In each

iteration, a new solution is generated by using Shift, Swap, and Reverse operators

consecutively; and the solution is compared with the best-known solution generated

earlier.

Algorithm 1. Local search (LS)

1 Procedure LS (Imax)

2 OFS Initial Solution;

3 GB OFS;

4 ILS 0;

5 While ILS < Imax do

6 OFS Shift (GB);

7 If TOFS < TGB then

8 GB OFS;

9 OFS Swap (GB);

10 If TOFS < TGB then

11 GB OFS;

12 OFS Reverse (GB);

13 If TOFS < TGB then

14 GB OFS;

15 ILS ILS + 1;

16 Return TGB;

 Local search based meta-heuristic algorithms for… 25

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

To escape from an entrapment in a local optimum, stochastic local search algorithm is

employed Ribeiro and Resende (2012). In the present study, this method accepts the

worse generated solution in the current iteration with a constant probability (C). Each of

the mentioned operators has equal probability to be selected. Algorithm 2 presents the

pseudocode of the proposed method. In this algorithm, which executes Imax iterations

(lines 6–35), based on a generated random probability (Pr) for each iteration, one of the

operators is used (line 7).

Algorithm 2. Stochastic local search (SLS)

1 Procedure SLS (Imax)

2 OFS Initial Solution;

3 GB OFS;

4 BGS OFS;

5 ISLS 0;

6 While ISLS < Imax do

7 Pr rnd(0,1);

8 If Pr < 1/3 then

9 OFS Shift (GB);

10 If TOFS < TBGS then

11 BGS OFS;

12 If TOFS < TGB then

13 GB OFS;

14 Else

15 If rnd(0,1) < C then

16 GB OFS;

17 elseif Pr > 2/3 then

18 OFS Swap (GB);

19 If TOFS < TBGS then

20 BGS OFS;

21 If TOFS < TGB then

22 GB OFS;

23 Else

24 If rnd(0,1) < C then

25 GB OFS;

26 Else

27 OFS Reverse (GB);

28 If TOFS < TBGS then

29 BGS OFS;

30 If TOFS < TGB then

31 GB OFS;

32 Else

33 If rnd(0,1) < C then

34 GB OFS;

35 ILS ILS + 1;

36 Return TBGS;

26 Ann Opt The Prac (AOTP), 2018, Vol. 1, No. 3

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

The other presented metaheuristic algorithm is called adaptive local search. In this

method, the probability of selecting each operator is calculated and updated in every

fixed number of iterations (n). Equation (13) shows how to calculate the probabilities of

each operator.

𝑝𝑦 =
𝑥𝑦

∑ 𝑥𝑦
3
1

 ∀ 𝑦 = 1,2,3 (13)

where xy is the number of improvements obtained by the operator type y, and 1 to 3

show the shift, swap and reverse operators, respectively. This algorithm is executed by

Imax iterations and after every n iterations, the probability of utilizing each operator is

calculated and used for the next n iterations. It should be noted that each probability can

only be tolerated from 0.1 to 0.8. The pseudocode of this algorithm can be written by

applying the mentioned changes in the pseudocode of algorithm 2.

4.5. Stopping criteria

Generally, if a solution found by a metaheuristic algorithm is accurate enough, the

iterative method should be stopped. In our study, since the optimal solutions of small-

size problems can be found by CPLEX optimizer software, maximum iteration numbers

are considered for those problems to find the optimal solutions. For large-size problems,

the stopping criteria are finding the lower bound or reaching a predetermined iteration

number. The lower bound is computed by solving the problem when the process times

are assumed to be zero. In this case, the problem will be a case of the traveling salesman

problem.

4.6. The overall method and parameter setting

Some of the parameters must be set beforehand to run the proposed metaheuristic

methods. In this research, 1000 iterations for small-size problems and 3000 iterations for

large-size problems are considered. To solve each of the algorithms, a new solution is

generated; its cycle time is computed and from the next generation, the solution is

compared with the best-found solution. Once a solution is selected, it is used to generate

a new solution in the next iteration. This procedure is repeated until the algorithm reaches

the stopping criteria (as explained in Section 4.5) and the best solution is obtained.

It should be mentioned that after preliminary experiments and using different

probabilities of getting the worse generated solution in stochastic local search method,

1% probability is considered. Also, the probabilities of selecting the operators are reset

after completing the iterations every 30 times in the adaptive local search method.

5. Experimental Results

Industrial to evaluate the proposed mathematical model and the solution methodologies,

several small- and large-size problems are considered and executed on an Intel(R)

Pentium(R) Dual CPU E2180 @ 2.00 GHz CPU with 2.0 GB of RAM.

 Local search based meta-heuristic algorithms for… 27

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

5.1. Exact methods

The proposed mathematical model (TPM) was compared with the only reported model

in the literature by Gultekin et al. (TGM) (2009). For this purpose, an FMC with identical

parts and processing time of 22, same as in their study, was considered. Both the models

have been coded in CPLEX 12.6 software. Table 1 shows the objective functions and the

average CPU times of solving the models. Each problem was performed 10 times, except

the examples of 6- and 7-machine cell that were executed only once. The CPU times are

in second.

Table 1. CPLEX software results for the mathematical models.

No. of

machines
Objective function

CPU time

TGM TPM

2 38 0.21 0.20

3 60 0.36 0.29

4 96 3.99 1.85

5 140 341.36 100.28

6 192 - 18338.88

The results (Table 1) demonstrate that TPM is much better than TGM, because of not

only TPM has less CPU time than the TGM for solving 2- to 5-machine cell problems,

but also TPM can find the optimal solution of 6-machine cell where TGM is not able to

solve this problem.

5.2. Metaheuristic algorithms

In this section, the results of solving different problems by local search (LS), stochastic

local search (SLS) and adaptive local search (ALS) algorithms are presented. To measure

the efficiency of these algorithms, small- and large-size problems are considered. All the

metaheuristic algorithms are coded in MATLAB R2013a software. The objective

functions (OBF) and the CPU times, shown in the following tables, are the average

results of executions carried out 10 times for each problem.

5.2.1. Small-size problems

Since TPM can only solve small-size problems, to evaluate the proposed metaheuristic

algorithms, some problems with 4, 5 and 6 machines with different processing times are

considered. The processing times of all parts on each machine are considered the same

and equal to 20, 80 and 160 (Table 2). It should be noted that when the processing times

are equal to 20, the cycle times are equal to the lower bound; and when the processing

times are equal to 160, all the cycle times are greater than the lower bound for each

problem.

28 Ann Opt The Prac (AOTP), 2018, Vol. 1, No. 3

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

Table 2. Results of the proposed methods for small-size problems.

No. of

machines

Process

time

Optimal

Value
OBF

CPU time (in seconds)

TPM LS SLS ALS

4

20 96 96 1.64 0.20 0.46 1.04

80 108 108 1.59 3.33 4.30 2.32

160 184 184 1.42 3.18 4.73 2.27

5

20 140 140 101.25 0.43 0.83 0.18

80 140 140 28.93 3.91 4.33 1.81

160 188 188 15.75 3.58 6.85 2.66

6

20 192 192 15643.19 0.37 0.33 0.44

80 192 192 7145.07 2.70 2.53 1.37

160 198 198 675.75 6.14 9.41 7.43

The results in Table 2 show that all the proposed methods are able to find the optimal

solutions for the considered small-size problems. Moreover, by increasing the processing

times, the CPU times are increased. Also, when the number of machines in a cell is

increased, the CPU time will be increased. Further on, the results show that the ALS

algorithm has less CPU times among the other algorithms when the processing time and

the number of machines are increased.

5.2.2. Large-size problems

To compare the proposed metaheuristic algorithms precisely, three groups of large-size

problems with 10 to 12 machines in a cell are considered (Table 3). Although some

methods can find the lower bounds in some of their solutions, this information is hidden

because of using the average amount of the results of 10 runs.

Table 3. Results of the proposed metaheuristic algorithms.

No. of

machines

– LB

Process

time

LS SLS ALS

Cycle

time

CPU

time

Cycle

time

CPU

time

Cycle

time

CPU

time

10 – 480

400 510.8 12.01 504.4 20.60 489.6 25.30

450 525.2 18.94 526.4 24.87 524.0 17.50

500 590.0 24.19 588.0 19.49 587.2 16.81

550 626.8 19.28 617.2 28.71 607.6 24.38

600 700.4 24.72 686.4 20.21 673.6 13.46

650 730.4 22.37 728.8 26.42 730.0 16.37

700 783.2 29.44 767.2 20.47 757.6 17.73

11 – 572

450 580.8 28.68 578.0 16.27 574.4 33.48

500 598.0 37.57 596.0 25.50 597.6 21.05

550 638.8 22.03 651.6 29.31 631.6 20.63

600 711.6 35.70 691.6 30.96 682.0 37.96

650 739.2 17.49 725.6 28.98 712.4 24.01

700 793.6 35.75 810.8 24.01 766.8 40.38

750 822.8 30.90 822.8 30.34 822.8 27.98

12 - 672
500 683.2 20.59 681.6 16.12 675.2 11.87

550 717.6 36.23 719.2 32.85 695.6 36.21

 Local search based meta-heuristic algorithms for… 29

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

Table 3. Continued.

Process

time

LS SLS ALS

Cycle

time

CPU

time

Cycle

time

CPU

time

Cycle

time

CPU

time

600 729.6 39.85 713.2 31.08 706.0 34.25

650 739.6 43.92 772.8 11.25 742.0 34.28

700 806.4 40.23 800.4 33.73 776.4 38.20

750 865.2 40.57 860.0 28.33 854.0 27.08

800 906.4 31.95 924.0 33.15 867.2 26.67

The first column of Table 3 shows the number of the machines in a cell and the lower

bound of its cycle time. The second column is related to the processing times of the

machines. The cycle times and the CPU times of solving the problems by using LS, SLS

and ALS methods are shown in the next columns. The results demonstrate that when the

processing times are small (less or equal to 500), there is no significant difference among

the methods but for larger processing times the ALS method performs much better than

the other two methods. Moreover, it is obvious that when the number of the machines or

the processing time is increased, the cycle time will also be increased. Additionally, the

CPU times of all the methods are similar to each other considering that by increasing the

number of machines and their processing times, the CPU times increase slightly.

5.2.3. Gap analysis

To analyze the gaps between solutions of the proposed metaheuristic algorithms and

lower bound of each problem, some problems with a very large number of machines in

a cell and large processing times are considered. Table 4 shows the results of the gaps

and the CPU times of the algorithms for the problems. The gaps are calculated by the

formula (14) where LB is the lower bound for each problem and OBF is the objective

function of each algorithm for that problem. Gaps are shown in percentage and the

remained columns are similar to Table 3.

𝐺𝑎𝑝(%) =
𝑂𝐵𝐹 − 𝐿𝐵

𝐿𝐵
∗ 100 (14)

Table 4. Results of the gap analysis.

No. of

machines

– LB

Process

time

LS SLS ALS

OBF
Gap

(%)
OBF

Gap

(%)
OBF

Gap

(%)

18 – 1440

1100 1488.0 3.33 1459.6 1.36 1452.0 0.83

1125 1445.8 0.40 1440.8 0.06 1443.2 0.22

1150 1480.0 2.78 1464.0 1.67 1463.6 1.64

1175 1480.4 2.81 1503.0 4.38 1472.8 2.28

1200 1484.0 3.06 1494.4 3.78 1472.4 2.25

19 – 1596

1200 1614.4 1.15 1625.6 1.85 1612.4 1.03

1225 1616.6 1.29 1632.2 2.27 1618.4 1.40

1250 1653.2 3.58 1650.4 3.41 1617.6 1.35

1275 1612.8 1.05 1614.6 1.17 1603.6 0.48

30 Ann Opt The Prac (AOTP), 2018, Vol. 1, No. 3

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

Table 4. Continued.

Process

time

LS SLS ALS

OBF
Gap

(%)
OBF

Gap

(%)
OBF

Gap

(%)

1300 1634.4 2.41 1625.4 1.85 1622.8 1.68

20 - 1760

1300 1770.4 0.59 1793.2 1.89 1764.4 0.25

1325 1807.4 2.69 1791.4 1.78 1762.4 0.14

1350 1786.8 1.52 1824.4 3.66 1780.8 1.18

1375 1776.4 0.93 1773.8 0.78 1773.4 0.76

1400 1790.8 1.75 1773.6 0.77 1771.2 0.64

Table 4, illustrates that the gaps in all three proposed algorithms are between 0.06% to

4.38%. The results illustrate that the gap for ALS is smaller than the other algorithms,

and it slightly decreases with increasing the number of the machines.

6. Discussion and conclusion

This paper has presented a novel mathematical model to determine the robot move

sequence to minimize the cycle time for the flexible robotic cells problems, wherein, the

machines are identical and parallel to each other. In these cells, a robot transports the

items from the input buffer, where unproduced items are kept, to the machines and then

from the machines to the output buffer, where the finished items are kept, and performs

the loading/unloading of the machines. Three metaheuristic algorithms based on local

search algorithm are presented to solve large-size flexible robotic cell problems. To

evaluate these algorithms, a number of problems have been generated and the solutions

have been compared with each other. The results demonstrate that the Adaptive Local

Search algorithm outperforms the other proposed algorithms. Developing other

metaheuristics for the given problem can be interesting in the further research.

Additionally, considering these problems under uncertainty of each parameter can be a

future subject. Finally, it is interesting to consider circular layouts. The cases where

machines have buffers with limited capacity may also be considered for future research.

References

1. Abdekhodaee, A. H., Wirth, A., & Gan, H. S. (2004). Equal processing and equal

setup time cases of scheduling parallel machines with a single server. Computers &

Operations Research, 31(11), 1867-1889.

2. Brauner, N., & Finke, G. (2001). Cycles and permutations in robotic

cells. Mathematical and Computer Modelling, 34(5-6), 565-591.

3. Crama, Y. (1997). Combinatorial optimization models for production scheduling in

automated manufacturing systems. European Journal of Operational Research, 99,

136-153.

4. Crama, Y., & Van de Klundert, J. (1999). Cyclic scheduling in 3‐machine robotic

flow shops. Journal of Scheduling, 2(1), 35-54.

5. Caramia, M., & Mari, R. (2017). A manufacturing cell formation problem with a

maximum cell workload constraint. IMA Journal of Management

Mathematics, 28(2), 279-298.

 Local search based meta-heuristic algorithms for… 31

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

6. Dawande, M., Geismar, H. N., Sethi, S. P., & Sriskandarajah, C. (2005). Sequencing

and scheduling in robotic cells: Recent developments. Journal of Scheduling, 8(5),

387-426.

7. Foumani, M., & Jenab, K. (2012). Cycle time analysis in reentrant robotic cells with

swap ability. International Journal of Production Research, 50(22), 6372-6387.

8. Foumani, M., & Jenab, K. (2013). Analysis of flexible robotic cells with improved

pure cycle. International Journal of Computer Integrated Manufacturing, 26(3),

201-215.

9. Ghadiri Nejad, M., & Banar, M. (2018). Emergency response time minimization by

incorporating ground and aerial transportation. Annals of Optimization Theory and

Practice, 1(1), 43-57.

10. Ghadiri Nejad, M., Güden, H., Vizvári, B., & Vatankhah Barenji, R. (2018). A

mathematical model and simulated annealing algorithm for solving the cyclic

scheduling problem of a flexible robotic cell. Advances in Mechanical

Engineering, 10(1) 1-12.

11. Ghadirinejad, M., & Mosallaeipour, S. (2013). A new approach to optimize a

flexible manufacturing cell. In 1st international conference on new directions in

business, management, finance and economics (Vol. 38).

12. Gultekin, H., Akturk, M. S., & Karasan, O. E. (2008). Scheduling in robotic cells:

process flexibility and cell layout. International Journal of Production

Research, 46(8), 2105-2121.

13. Gultekin, H., Karasan, O. E., & Akturk, M. S. (2009). Pure cycles in flexible robotic

cells. Computers & Operations Research, 36(2), 329-343.

14. Jiang, Y., Zhang, Q., Hu, J., Dong, J., & Ji, M. (2015). Single-server parallel-

machine scheduling with loading and unloading times. Journal of Combinatorial

Optimization, 30(2), 201-213.

15. Jolai, F., Foumani, M., Tavakoli-Moghadam, R., & Fattahi, P. (2012). Cyclic

scheduling of a robotic flexible cell with load lock and swap. Journal of Intelligent

Manufacturing, 23(5), 1885-1891.

16. Kim, H., Kim, H. J., Lee, J. H., & Lee, T. E. (2013). Scheduling dual-armed cluster

tools with cleaning processes. International Journal of Production

Research, 51(12), 3671-3687.

17. Mjirda, A., Jarboui, B., Mladenović, J., Wilbaut, C., & Hanafi, S. (2014). A general

variable neighbourhood search for the multi-product inventory routing

problem. IMA Journal of Management Mathematics, 27(1), 39-54.

18. Mosallaeipour, S., Nazerian, R., & Ghadirinejad, M. (2018a). A Two-Phase

Optimization Approach for Reducing the Size of the Cutting Problem in the Box-

Production Industry: A Case Study. In Industrial Engineering in the Industry 4.0

Era (pp. 63-81). Springer, Cham.

19. Mosallaeipour, S., Nejad, M. G., Shavarani, S. M., & Nazerian, R. (2018b). Mobile

robot scheduling for cycle time optimization in flow-shop cells, a case

study. Production Engineering, 12(1), 83-94.

32 Ann Opt The Prac (AOTP), 2018, Vol. 1, No. 3

© 2018 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

20. Nejad, M. G., Kashan, A. H., & Shavarani, S. M. (2018a). A novel competitive

hybrid approach based on grouping evolution strategy algorithm for solving U-

shaped assembly line balancing problems. Production Engineering, 1-12.

21. Nejad, M. G., Kovács, G., Vizvári, B., & Barenji, R. V. (2018b). An optimization

model for cyclic scheduling problem in flexible robotic cells. The International

Journal of Advanced Manufacturing Technology, 95(9-12), 3863-3873.

22. Nejad, M. G., Shavarani, S. M., Vizvári, B., & Barenji, R. V. (2018c). Trade-off

between process scheduling and production cost in cyclic flexible robotic cells. The

International Journal of Advanced Manufacturing Technology, 96(1-4), 1081-1091.

23. Ribeiro, C. C., & Resende, M. G. (2012). Path-relinking intensification methods for

stochastic local search algorithms. Journal of heuristics, 18(2), 193-214.

24. Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J., & Kubiak, W. (1992).

Sequencing of parts and robot moves in a robotic cell. International Journal of

Flexible Manufacturing Systems, 4(3-4), 331-358.

25. Sevkli, M., & Aydin, M. E. (2007). Parallel variable neighbourhood search

algorithms for job shop scheduling problems. IMA Journal of Management

Mathematics, 18(2), 117-133.

26. Shavarani, S. M., Nejad, M. G., Rismanchian, F., & Izbirak, G. (2018). Application

of hierarchical facility location problem for optimization of a drone delivery system:

a case study of Amazon prime air in the city of San Francisco. The International

Journal of Advanced Manufacturing Technology, 95(9-12), 3141-3153.

27. Vatankhah Barenji, R., Ghadiri Nejad, M., & Asghari, I. (2018). Optimally sized

design of a wind/photovoltaic/fuel cell off-grid hybrid energy system by modified-

gray wolf optimization algorithm. Energy & Environment, 0958305X18768130.

