Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Computers & Structures, 169, 1–12.
Bansal, J. C., Sharma, H., Jadon, S. S., & Clerc, M. (2014). Spider monkey optimization algorithm for numerical optimization. Memetic computing , 6 , 31–47.
Bhattacharjee, K., Bhattacharya, A., & nee Dey, S. H. (2013). Chemical reaction optimisation for different economic dispatch problems. IET Generation, Transmission & Distribution, 8 , 530–541.
Civicioglu, P. (2012). Transforming geocentric cartesian coordinates to geode- tic coordinates by using differential search algorithm. Computers & Geo- sciences, 46 , 229–247.
Civicioglu, P. (2013). Backtracking search optimization algorithm for numerical optimization problems. Applied Mathematics and computation, 219 , 8121– 8144.
Das, S., & Suganthan, P. N. (2010). Problem definitions and evaluation cri- teria for cec 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Nanyang Technological University, Kolkata, (pp. 341–359).
Erol, O. K., & Eksin, I. (2006). A new optimization method: big bang–big crunch. Advances in Engineering Software, 37 , 106–111.
Faria, H., Binato, S., Resende, M. G., & Falc˜ao, D. M. (2005). Power transmis- sion network design by greedy randomized adaptive path relinking. IEEE Transactions on Power Systems , 20 , 43–49.
Sayed, G.I., Hassanien, A.E. and Azar, A.T., 2019. Feature selection via a novel chaotic crow search algorithm. Neural computing and applications, 31(1), pp.171-188.
Haffner, S., Monticelli, A., Garcia, A., Mantovani, J., & Romero, R. (2000). Branch and bound algorithm for transmission system expansion planning using a transportation model. IEE Proceedings-Generation, Transmission and Distribution, 147 , 149–156.
Haffner, S., Monticelli, A., Garcia, A., & Romero, R. (2001). Specialised branch- and-bound algorithm for transmission network expansion planning. IEE Proceedings-Generation, Transmission and Distribution , 148 , 482–488.
Han, K.-H., & Kim, J.-H. (2002). Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE transactions on evolutionary computation, 6 , 580–593.
Huang, J., Gao, L., & Li, X. (2015). An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure design- ing and machining processes. Applied Soft Computing , 36 , 349–356.
Kao, Y.-T., & Zahara, E. (2008). A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Applied soft computing , 8 , 849–857.
Kennedy,J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95International Conference on Neural Networks (pp. 1942–1948).IEEE volume 4.
Khandelwal, A., Bhargava, A., Sharma, A., & Sharma, H. (2018). Modified grey wolf optimization algorithm for transmission network expansion planning problem. Arabian Journal for Science and Engineering , 43 , 2899–2908.
Mohammadi, Farid, and Hamdi Abdi. "A modified crow search algorithm (MCSA) for solving economic load dispatch problem." Applied Soft Computing 71 (2018): 51-65.
Prior, H., Schwarz, A., & Gu¨ntu¨rku¨n, O. (2008). Mirror-induced behavior in the magpie (pica pica): evidence of self-recognition. PLoS biology , 6 , e202.
Rathore C., Roy, R., Sharma, U., & Patel, J. (2013). Artificial bee colony algorithm based static transmission expansion planning. In 2013 International Conference on Energy Efficient Technologies for Sustainability (pp.1126–1131). IEEE.
Rider, M., Garcia, A., & Romero, R. (2008). Transmission system expansion planning by a branch-and-bound algorithm. IET generation, transmission & distribution, 2 , 90–99.
Romero, R., Monticelli, A., Garcia, A., & Haffner, S. (2002). Test systems and mathematical models for transmission network expansion planning. IEE Proceedings-Generation, Transmission and Distribution , 149 , 27–36.
Sharma, A., Sharma, H., Bhargava, A., & Sharma, N. (2017). Fibonacci series- based local search in spider monkey optimisation for transmission expansion planning. International Journal of Swarm Intelligence, 3 , 215–237.
Shekhawat, Shalini, and Akash Saxena. "Development and applications of an intelligent crow search algorithm based on opposition based learning." ISA transactions 99 (2020): 210-230.
Singh, N., & Singh, S. (2017). A novel hybrid gwo-sca approach for optimization problems. Engineering Science and Technology, an International Journal , 20 , 1586–1601.
Verma, A., Panigrahi, B. K., & Bijwe, P. (2009). Transmission network expan- sion planning with adaptive particle swarm optimization. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (pp. 1099– 1104). IEEE.
Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing , 4 , 65–85.
Yang, X.-S., & Deb, S. (2010). Engineering optimisation by cuckoo search. Inter- national Journal of Mathematical Modelling and Numerical Optimisation, 1 , 330–343.
Zhao, W., Wang, L., & Zhang, Z. (2019). Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowledge-Based Systems, 163 , 283–304.