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Abstract In this article we study the prevalence of contagious disease in a community. 

To this end, we view society as a dynamic system and apply mathematical equations and 

relationships to it. First, we present the history of mathematical modeling in the field of 

contagious diseases and the work done in this field, then find out the probability of the 

virus spreading in a population with a number of people with contagious disease, and 

finally the differential equation of disease spread. Obtain the environment and then 

calculate the time it took to get the disease. In addition, we also plan to provide a model 

to describe how a virus is transmitted. In this model, we have four boxes called 

susceptible individuals, virus carriers, treated individuals, and improved individuals. We 

obtain the differential equations of growth and decline of each of these boxes and 

examine the stability condition of the system. 
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1. Introduction 

The virus is a small infectious agent that can only replicate within the living cells of an 

organism. Viruses are found in almost all the ecosystems of the earth and are known to 

transmit infections to many species, including bacteria, fungi, plants, insects, vertebrates 

and more. Large number of viruses cause disease in humans, pets or crops 

Mathematical models and computer simulations are useful laboratory tools for testing 

past theories, making new theories, making quantitative guesses, and finding the right 

answers to complex questions. These models can replace the previous parameters with 

the specified parameters and compare the results with the previous models. 

Considering ways of transmitting contagious diseases in communities, regions, and 

countries has helped scientists find appropriate ways to prevent or reduce transmission. 

There are many uses to these models. These models are used extensively in 

benchmarking, designing, implementing, and evaluating programs, identifying 
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optimization techniques, finding ways of prevention, drug therapy, and finally disease 

control. 

Programs to improve health, use of antibiotics, and vaccination had a major impact on 

the popular belief of the 1960s that contagious diseases would eventually be eliminated. 

As a result, chronic diseases such as cardiovascular disease and cancer were attracted to 

industrialized countries, especially the United States, but contagious diseases were still 

the cause of human suffering and death in developed countries. In addition, agents of 

contagious diseases were constantly adapting and evolving, so that new contagious 

diseases arising from the diseases existing at the time emerged. 

Newly diagnosed diseases at that time included Legionnaires' Disease (1976), Toxic 

Syndrome (1978), Hepatitis C (1989), and Hepatitis E (1990). Human 

Immunodeficiency Virus (HIV), the cause of Acquired Immune Deficiency Syndrome 

(AIDS), appeared worldwide in 1981, and the most important way of transmitting it was 

to have sex. 

In the same years, diseases such as tuberculosis and pneumonia formed resistant chains 

against antibiotics, and the same antibiotic resistance led to the transformation of the 

agents of these diseases and their evolution. Diseases like yellow fever and malaria have 

reappeared and spread to different climates. One of the reasons for their re-emergence 

was climate change in different regions of the globe. Diseases such as plague and cholera 

have emerged as new diseases such as bovine madness and mumps fever. Surprisingly, 

the agents of these emerging diseases all came from previous disease agents such as 

bacteria, viruses, protozoa, and worms (such as pumpkin worms). 

Since clinical trials involve both high cost and time-consuming time for their results to 

be known and some diseases cannot be studied in vitro, scientists have been thinking of 

modeling them using mathematical science, and in particular using it. They fell out of 

the differential equation system, so that mathematical models became increasingly 

important tools in analyzing and controlling outbreaks, especially contagious diseases. 

The first mathematical model for smallpox epidemic was written in 1760 by Daniel 

Bernoulli. The model analyzed people's health in preventing the spread of smallpox, but 

serious work began on the mathematical modeling of epidemic diseases in the 20th 

century, and then diseases were modeled one after another by mathematicians and 

biologists. These models have been perfected over the years and data analysis has been 

performed on them. Simulators were also developed for the computers as they came on. 

Here are two mathematical models that have been very effective in recent advances in 

medical science in the field of infectious diseases. 

In recent years, a mathematical model has been introduced to diagnose epidemics of the 

most common infectious diseases based on climatic parameters. Researchers at Tufts 

University School of Medicine in Boston have developed a mathematical model that 

assesses the probability of outbreaks based on environmental parameters in each season 

by daily infectious disease surveys. The scientists tested their mathematical model based 

on data collected by the University of Massachusetts on six diseases, according to the 
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Medical News ToD. The six diseases are: Jardia and Cryptosporidium (two intestinal 

infectious diseases), Salmonella and Campylobacter (two common intestinal diseases 

that are caused by the entry of Salmonella and Campylobacter bacteria and are very 

common in Europe), Shigellosis Tropical (caused by Shigella infection) and HIV caused 

by hepatitis A virus infection. Then, using climatic data collected between 1992 and 

2001, the scientists studied the prevalence of each disease in Massachusetts based on the 

average daily temperature grade, time, and duration of each disease. Preliminary results 

of this model showed that the onset of these diseases was associated with a heat peak 

other than hepatitis A. The researchers then developed a mathematical algorithmic model 

based on daily, seasonal, and monthly information that analyzes the epidemic of these 

infectious diseases. 

Another mathematical model that revolutionized medical science is the model proposed 

for AIDS. Infectionists and other physicians have long had a clear theory about AIDS, 

which is that the AIDS virus can stick to specific cells and infect them. These infected 

cells, most of which are white blood cells, either die by themselves, or they kill and kill 

their own cells instead of strangers. There were various biological evidences to support 

this hypothesis, but a group of mathematical scientists questioned the hypothesis that 

was popular in the medical world. These mathematicians presented a mathematical 

model for AIDS and based on this model showed that this hypothesis did not justify the 

slow course of the disease over the years, and that if the proposed hypothesis were 

correct, the disease would have to be recovered within a few months. It makes sense. 

These calculations challenged all previous and accepted assumptions among scientists. 

Of course, the researchers said in their report in Plus Madison that this study is only a 

mathematical model and cannot say what is really going on in the patient's body infected 

with the virus, and therefore more extensive physio pathological research is needed than 

the course of development. 

Most of these mathematical models studied in the field of infectious and infectious 

diseases are composed of continuous time equations. For the first time in 1906, Hummer 

introduced a discrete time model and examined it thoroughly. In this model, the number 

of patients per unit of time was analyzed in terms of disease distribution density. 

Subsequently, differential equations were used to control diseases such as malaria and 

human-animal diseases. Among the scientists who have been involved in this field for 

many centuries have been Bonhoeffer and Novak whose proposed models have been the 

basis of many studies. Most of the information obtained from these models is the rate of 

disease growth, the parameters of the virus's initial proliferation, the conditions of disease 

growth decline, and the conditions to achieve infection status. Mathematical modeling 

and the study of the dynamics of their equation systems grew well into the mid-twentieth 

century, with the first major book published in this field by Bali in 1957 being one of the 

most prominent and important sources of modeling and dynamic study of infectious 

diseases. 

In recent years, various branches of mathematics have been used in most sciences, 

including medicine, biology, environment, economics, engineering and meteorology, so 

that mathematics has become an integral part of science. It has always been one of the 
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human mental dreams in life to prevent and control unwanted and undesirable factors 

such as diseases. The regular repetition of the epidemics and the similar form of the 

epidemics of a disease for a long time has led mathematical researchers to develop a 

model for their interpretation and ultimately to control the spread by careful and precise 

control. 

2.  Diseases caused by the virus 

Common diseases in humans, such as the common cold, influenza, smallpox, and herpes 

blistering, are caused by viruses. There are currently 21 families of viruses known to 

cause human disease. Figure 1.1 shows important diseases caused by various viruses in 

humans. Some of these diseases, such as AIDS, hepatitis, herpes simplex, measles, avian 

influenza, SARS, etc., are highly contagious (47) and viruses are also important 

contributors to disease transmission. The plague is on the human body. Mortality due to 

infectious diseases in 1998 and 2007 is shown in Figure 1.2. Approximately 1.6 and 4.4 

million deaths from acute respiratory diseases occurred in 1998 and 2007 respectively, 

many of which were caused by viruses. AIDS in 1998 and 2007 killed 1.5 million and 1 

million people worldwide, and measles is still a major killer in developing countries. 

Some viruses, such as HIV and AIDS, influenza, insect diseases, yellow fever and 

dengue are highly contagious. According to the World Health Organization (WHO) 

report on the global status of HIV / AIDS, approximately 70 million people have been 

infected with the virus, and about 35 million have died of AIDS since its spread. 

Although the burden of the disease varies considerably between countries and regions, 

the epidemic persists, and by the end of 2011, it was estimated that 34.0 million people 

(6.5–7.5 million) And 1.5% of adults between the ages of 15-49 lived with HIV 

worldwide. 

 

Figure 1. Overview of the major types of viral infection and the most important species 

associated with it. 
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Many dangerous viruses are effectively controlled by vaccination. There are useful 

vaccines for disease-causing viruses, such as smallpox, measles, rubella, epilepsy, 

varicella zoster, hepatitis A and B. The spread of some of these diseases, such as measles, 

has been significantly reduced in some developed countries by the use of vaccines. 

However, these diseases still lead to pathogenicity in many developing countries. In 

addition, many vaccines that cause major diseases, such as hepatitis C, hepatitis D, and 

HIV, are not yet vaccinated. 

Viruses have different mechanisms of pathogenicity in an organism that are highly 

dependent on the type of virus. Viruses usually damage the host through cell analysis, 

production of toxins, and cell deformation (3). When a virus enters the cell and completes 

its natural proliferation cycle, the host cell breaks down due to the internal physical stress 

caused by the virus replication or the defensive immune response. In addition, during the 

period of virus replication, many toxic viral components as well as byproducts due to 

cell proliferation accumulate in the cell. Cell degradation and toxic compounds cause 

cell death. In multicellular organisms, if sufficient numbers of cells are lost, the entire 

organism will suffer from its effects. Some viruses, if they continue to proliferate in the 

body, despite host defense mechanisms, can lead to lifelong infection or chronic 

infection. This is the case with hepatitis B and C viruses. 

  

Figure 2: Infectious lethal agents in 1998 and 2007. 

3. Mathematical modeling  

We consider a community of 𝑛 population. Suppose a virus is spread by 𝑘 people. So 

𝑛 − 1 people in this community are exposed to the virus. We choose a random sample 

randomly from this community. If the random variable 𝑥 represents the number of virus 

transmitters in a unit of time, then the probability function for this random variable is the 

same as the geometrical distribution function, as follows: 
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Our goal is to obtain the expected length of time that all members of the population will 

be affected by the disease, so we expect the mathematical expectation of the preceding 

geometrical function. 
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Now, in order to obtain the equation for the growth of the number of virus carriers and 

also to calculate the time of infection of the whole population, we write the following 

differential equation based on the above mathematical expectation. 

Suppose 𝑑1 the number of carriers expected to be affected at t-th . Then we have: 

2

1 1

1
( ); 1, 1,...,t

t t t t t t

d
d d d d d n d d t m

n n
          (3) 

Here 𝑚 are the number of days to 𝑑1 come to 𝑛. The strategic differential equation of 

this system is as follows: 
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The above differential equation is a separable differential equation that we solve: 
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We have a relationship with integrating parties: 

∫(
1

𝑦
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𝑛⁄
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𝑦
𝑛⁄
)𝑑𝑦 = ∫𝑑𝑡  → ln 𝑦 − ln (1 −

𝑦
𝑛⁄  ) = 𝑡 → 𝑙𝑛

𝑦

1 − 𝑦𝑛
= 𝑡   

(6) 

→ 𝑦(𝑡) =
𝑛

1 + (𝑛 − 1)𝑒−𝑡
;  𝑡 > 𝑜. 
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We are now using the exact answer to this equation to estimate 𝑚, that is, how many 

days do the whole community become infected with the virus? 

We calculate the time 𝑡𝑛 it takes to get 𝑦(𝑡) very close to the number 𝑛 . Suppose 𝜀 > 0 

,we solve the equation 𝑦(𝑡𝑛) = 𝑛 − 𝜀  in terms of 𝑡𝑛 :  

𝑛

1 + (𝑛 − 1)𝑒−𝑡𝑛
= 𝑛 − 𝜀 →  𝑒𝑡𝑛 =

(𝑛 − 𝜀)(𝑛 − 1)

𝜀
 →  𝑡𝑛 = ln(

(𝑛 − 𝜀)(𝑛 − 1)

𝜀
)   (7) 

Now we use the Taylor series  ln(1 − 𝑥) = −𝑥 + 𝑥
2

2⁄ + 𝑂(𝑥3) to approximate 𝑡𝑛 . 

𝑡𝑛 = ln(
(𝑛 − 𝜀)(𝑛 − 1)

𝜀
) = ln[𝑛(1 − 𝜀 𝑛⁄ )] + ln[ 𝑛(1 − 𝜀 𝑛⁄ )] + ln  (1 𝜀⁄ ) 

(8) = 2ln  𝑛 + [− 𝜀 𝑛⁄ + 𝑂(
𝜀2

𝑛2
)] + [−1 𝑛⁄ + 𝑂(

1

𝑛2
)] + ln  (1 𝜀⁄ ) 

= 𝑐 𝑙𝑜𝑔2 𝑛 + ln  (
1
𝜀⁄ ) − (

1 + 𝜀

𝑛
) + 𝑂(

1

𝑛2
) 

Where is 𝑥 =
1

𝑛
  or 𝑥 =

𝜀

𝑛
  and 𝑐 = 2𝑙𝑛2 ≈ 1.386. For the big ones 𝑛, 𝑡𝑛 = 𝑐 log2 𝑛  

That is, the time it takes for the whole community to become infected is: 𝑡𝑛 =

1.386 log2 𝑛. 

For example, the length of time a person is infected with a virus is equal to: 

𝑡1000 ≈ 1.386 log2 1000 ≈ 13.81 

Next, we are going to provide a model for describing how a virus is transmitted in 

general. 

In this four-box model, we consider people susceptible(S) to the virus, contagious(I), 

treated(T), and improved(R). 

In this paper, we focus on an epidemiological model, dividing the population into four 

categories of susceptibility, contagion, contamination, treatment and improvement. In 

short, we use SITR. In the model SITR, a susceptible person is exposed to a 

contamination prior to infection, which is after the infection has spread. 

4.  Model formulation  

According to the previous section, the total population size N(t) in time t for the virus in 

question is as follows: 

( ) ( ) ( ) ( ) ( )N t S t I t R t T t     (9) 

We publish the rate (per capita) by 𝛽 and the mortality rate by 𝜇. We show the rate of 

people being treated with 𝛿 and 𝜔 the rate of their recovery. 

The fraction 𝛾 represents the infected individuals selected for treatment at a time. In 

addition, we hypothesized that treatment would reduce the proportion of infections 𝛿. 
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How can we write a differential system? 

Suppose there is an average population of people 𝛽𝑁(𝑡) who infect others at the time 𝑡, 

which 𝑁(𝑡) is the size of the whole population. Since 
𝑆(𝑡) 

𝑁(𝑡) 
  is the likelihood of accidental 

exposure by an infected person to a susceptible person is equal to 𝛽
𝑆(𝑡) 

𝑁(𝑡) 
  the number of 

new infected individuals per unit time 𝑡, the rate of new infections at exposure is as 

follows: 

( )
( ) ( ( ) ( )) ( )( ( ) ( ))

( )

S t
N t I t T t S t I t T t

N t
       (10) 

So 𝛽𝑆(𝑡)(𝐼(𝑡) + 𝛿𝑇(𝑡)) is the rate of people who have left the class 𝑆(𝑡) per unit of time 

t. 

The number of susceptible viruses is reduced at a reduced rate 𝛽 and the amount −𝛽𝑆𝐼of 

susceptible is reduced. On the other hand, because the growth rate of people 𝜋 has 

improved and these people may be exposed to the virus again after recovery, so they are 

added to the 𝜋𝑅 amount of talent, so we have: 

S SI R      (11) 

People who are susceptible to the disease are treated at the same rate 𝛿, and patients may 

also die at the rate 𝜇 before the treatment phase. 

𝐼′ = 𝛽𝑆𝐼 − 𝛿𝑇 − 𝜇𝐼 (12) 

𝜔𝑇(𝑡) is the rate of people receiving treatment that improve in time 𝑡  and die in 

proportion 𝜇. As a result: 

𝑇′ = 𝛿𝑇 − (𝜇 + 𝜔)𝑇 (13) 

The equation for growth or decline of the number of people improved is as follows: 

𝑅′ = 𝜔𝑇 − 𝜋𝑅 (14) 

And finally the population reduction equation will be: 

= -𝜇N 𝑁′ (15) 

But since the death rates are taken into account in all the differential equations of the 

previous factors, we do not mention the latter equation in our equation system, which 

represents the dynamics of virus propagation. 
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{
 
 
 
 
 

 
 
 
 
 
𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽𝑆(𝑡)𝐼(𝑡) + 𝜋𝑅(𝑡)            

𝑑𝐼(𝑡)

𝑑𝑡
=  𝛽𝑆(𝑡)𝐼(𝑡) − 𝛿𝑇(𝑡) − 𝜇𝐼(𝑡)

𝑑𝑇(𝑡)

𝑑𝑡
=  𝛿𝑇(𝑡) − (𝜇 + 𝜔)𝑇(𝑡)         

𝑑𝑅(𝑡)

𝑑𝑡
= 𝜔𝑇(𝑡) − 𝜋𝑅(𝑡)                   

𝑑𝐷(𝑡)

𝑑𝑡
= 𝜇𝐼(𝑡) + 𝜇𝑇(𝑡)                     

 (16) 

We are now looking for a system balance point, that is, where we do not have 

the patient or the person infected with the virus. Mathematically, when the 

number of contagious and treated people is zero. In this case the Jacobian 

matrix corresponds to said device at equilibrium point 𝐸∗ = (𝑆∗. 0 . 0 . 𝑅∗. 𝐷∗) 

It is as follows: 

[
 
 
 
 
0
0

  −βS∗              0          𝜋  0
βS∗ −  μ      – δ           0  0

0
0
0

      0        δ − μ − ω   0  0
      0               ω         −𝜋 0
         μ            μ            0  0]

 
 
 
 

 (17) 

So 

𝑝(𝜆) =  𝜆2(𝜆 + 𝜋)(𝜆 − 𝛽𝑆∗ + 𝜇)(𝜆 − 𝛿 + 𝜇 + 𝜔) (18) 

 By placing 

𝑎 ≔ 𝜋  .   𝑏 ≔  −𝛽𝑆∗ + 𝜇  .   𝑐 ≔ −𝛿 + 𝜇 + 𝜔  (19) 

We have: 

𝑝(𝜆) =  𝜆2(𝜆3 + (𝑎 + 𝑏 + 𝑐)𝜆2 + (𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐)𝜆 + 𝑎𝑏𝑐) (20) 

Thus, according to the Horowitz theorem, the prerequisite for local asymptotic stability 

is: 

(𝑎 + 𝑏 + 𝑐) > 0  ⟹   𝜋 − 𝛽𝑆∗ + 2𝜇 − 𝛿 + 𝜔 > 0 
(21) 

𝑎𝑏𝑐 > 0  ⟹   𝜋(−𝛽𝑆∗ + 𝜇)(𝜇 − 𝛿 + 𝜔) > 0 

And the third condition is (𝑎 + 𝑏 + 𝑐)(𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐) > 𝑎𝑏𝑐. Given the two preconditions, 

just have: 

{

(𝑎 + 𝑏) > 0  ⟹   𝜋 − 𝛽𝑆∗ + 𝜇 > 0
(𝑎 + 𝑐) > 0  ⟹   𝜋 + 𝜇 − 𝛿 + 𝜔 > 0

(𝑏 + 𝑐) > 0  ⟹  −𝛽𝑆∗ + 2𝜇 − 𝛿 + 𝜔 > 0

 (22) 

Given the above relationships and also by referring to the definitions of the variables 

above, we can obtain the conditions for the persistence of the virus in a community. 
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5. Conclusions and Suggestions 

The basic purpose of mathematical modeling of communicable diseases is to study the 

prevalence and spread of diseases both in space and time. So that the mechanism of 

disease transmission and its affective features enable decision makers to make 

predictions about the disease and thus to design disease control strategies. Understanding 

the type of infectious disease in the region or country can lead us to approach reducing 

disease transmission. 

The process of model selection and its formulation clarifies assumptions, values, and 

parameters; the parameters used in an epidemic model must be clearly interpreted. 

Mathematical models must be formulated in such a way that they are simple enough to 

be able to answer the questions. 

Having an accurate understanding of the predicted parameters in the model and knowing 

the dominant relationship between the various parameters involved in the mathematical 

expression of the prevalence model of a particular disease has an important role in 

analyzing the model. 

Many mathematical models used in the analysis of the prevalence of communicable 

diseases often appear in the form of several differential equations. Since it is often 

difficult and in some cases impossible to obtain the analytical solution of ordinary 

differential equations, so numerical methods can be employed as approximate tools by 

approximating the differential equation. 

Mathematically simulating the prevalence of diseases, the following questions are now 

considered as future goals and tasks. 

How can mathematical modeling prevent specific outbreaks of measles, measles, 

smallpox, AIDS, etc. depending on local and regional conditions? 

How can a suitable mathematical model be presented for a contagious disease according 

to local and regional conditions? 

How can the epidemic of the disease be diagnosed in the target population according to 

the mathematical model of a contagious disease in a target population? 
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