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Abstract Multi-attribute decision making (MADM) is a hot research area in fuzzy 

mathematics and to deal with that, the averaging and geometric aggregation operators 

(AOs) are the widely used tools. The aim of this manuscript is to propose the notion of 

averaging and geometric AOs in the environment of T-spherical fuzzy sets (TSFSs). 

TSFS enables the selection of grades of memberships from considerably a larger domain 

and hence overcome the drawbacks of the existing fuzzy frameworks. In this paper, we 

develop some novel operations for TSFSs including algebraic sum, product etc. Based 

on new operations some averaging AOs including T-spherical fuzzy weighted averaging 

(TSFWA) and T-spherical fuzzy weighted geometric (TSFWG) operators are developed. 

The monotonicity, idempotency and boundedness of the defined operators are 

investigated, and their fitness is validated using induction method. With the help of an 

illustrative example, the problem of policy decision making using a MADM algorithm 

is solved. The new proposed work and the existing literature is compared numerically 

and the advantages of the TSFWA and TSFWG operators are investigated over existing 

work. 
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1. Introduction:  

After Zadeh’s [1] remarkable work on fuzzy set (FS), scientists took interest in theory of FS as a 

FS can deal with real life scenarios with more accuracy and precision. Zadeh’s FS leaded the researchers 

in many new directions such as interval-valued FS [2], IFS and intuitionistic fuzzy number (IFN) [3, 4], 

interval-valued IFS [5], hesitant fuzzy set (HFS) [6, 7] and Pythagorean FS (PyFS) [8, 9] etc. These new 

structures are developed due to the deficiency in the existing literature and can deal with real-life problems 

with more accuracy. Atanassov’s IFS improved Zadeh’s FS as it introduced the non-membership grade 

along with the membership grade. With two membership functions, Atanassov’s IFSs modeled real-life 

scenarios effectively but there are some situations where it fails to be applied. In such scenarios the 

framework of PFS and picture fuzzy number (PFN), presented by Cuong [10] that uses four membership 

functions namely membership, abstinence, non-membership and refusal degree, could be a better option. 

For a better understanding, Consider the following two real-life scenarios: 

1. In electoral voting, a voter’s behavior could be divided into four types i.e. vote in favor, vote against, 

abstinence or refusal. Here, the abstain mean that one may vote in favor and against at the same time 

i.e. one can leave the ballet paper blank or stamped in favor and against both but in any way casted 

the vote. The refusal degree is based on those voters who did not vote at all. 

2. In MADM problems, whenever a candidate is evaluated, the information about him could be true +𝑣𝑒, 

true −𝑣𝑒, false −𝑣𝑒 and false +𝑣𝑒 which could be modeled by four characteristic functions of PFS. 

The above two examples clearly proved the generalization of PFS over IFS. Due to the diverse nature 

of PFS, some quality results in this direction have been achieved such as in [11] the authors introduced the 

idea of PFSs which proves to be a generalized form of IFSs. [12] is about some fuzzy logic operators for 

PFSs, in reference [13] Garg studied some aggregation operators (AOs) in picture fuzzy settings. [14] 

investigated picture fuzzy cross-entropy for MADM problems, and reference [15] developed some picture 



fuzzy AOs and investigated their practicality in decision making problems. For other related work see [16, 

17]. 

As discussed, Cuong’s idea of PFS is substantial due to its flexible nature that the existing concepts 

lacks but there is a drawback in it i.e. the sum of grades of all four functions in a PFS must be less than 

one. This is a major drawback in the structure of PFS as due to this factor one is unable to assign values 

to membership functions independently. Realizing this issue, the concept of spherical fuzzy set (SFS) and 

spherical fuzzy number (SFN) were introduced by Mahmood et. al. [18] which were further extended to 

TSFS and T-spherical fuzzy number (TSFN) in 2018. The idea of TSFS is a generalization of IFS and PFS 

allowing the grades of membership functions to be chosen from anywhere in the unit interval without any 

restriction (See Definition 4 and 5). TSFSs have been successfully applied to some real problems as in 

[18], the framework of TSFS is used in medical diagnosis and MADM problems. In [19], some similarity 

measures are defined for TSFSs and applied in pattern recognition problems. The framework of TSFS is 

so diverse and flexible that it can solve all the problems lies in the environment of IFS and PFS 

conveniently however, IFS and PFS on the other hand could not be able to deal with the information 

provided in the environment of TSFSs. Further, Ullah et al. [20] evaluated the investment policy making 

based interval-valued T-Spherical fuzzy aggregation using a MADM approach. Ullah et al. [21] 

investigated the cluster analysis using correlation coefficients for TSFSs. For some other recent work one 

may refer to [22, 23].    

MADM is a process in which individuals or objects are evaluated based on some attributes with the 

help of some aggregation tools. Since the theory of FS has been developed, the concept of FS and its 

several extensions have been applied to MADM problems e.g. in [24] FSs are used in medical diagnosis, 

[25] is about decision making in fuzzy environment. In MADM problems, aggregation tools play essential 

role. Based on t-norms and t-conorms, several AOs have been developed so far including averaging, 

geometric, Einstein averaging and Archimedean averaging operators have been developed for several 

different extensions of FSs such as, Xu  [26] studied MADM problems using similarity measures of IFSs, 

[27] introduced a novel approach to MADM based on IFSs, in [28] Liu et al. studied MADM methods 

based on IFSs, Reference [29] focused on MADM method using on a new accuracy formula under interval-

valued IFSs and in Reference [30] Xu investigated the role of power AOs in MADM problems under 

intuitionistic fuzzy settings. Some other related work on theory of AOs and MADM in fuzzy environment 

one may refer to [31-52]. 

In [31] Xu developed some averaging AOs of IFSs and applied them in MADM problems. [9] 

developed the theory of averaging operators for Pythagorean FSs as a generalization of averaging operators 

of IFSs. Garg [13] extended the idea of Xu [31] and developed the same operators in the environment of 

PFSs. Garg proved that the operators defined in [31] could not be applied in situations discussed in [13] 

i.e. in the environment of PFSs and that the operators defined in [13] can process the information provided 

in the framework of IFSs and PFSs as well. 

In this article, we aim to develop the averaging and geometric AOs of TSFSs as a generalization of 

operators defined in [9, 13, 31]. The properties of the new AOs are discussed along with pointing out the 

shortcomings of the existing AOs and the advantages of the proposed AOs. 

The article is organized as: section one provided a brief introduction of existing literature, pointing 

out towards possible drawbacks of existing concepts and mentioning some spaces for new work. Section 

two is based on some prerequisites. In section three, some new set theoretic operations for TSFSs are 

proposed and their results are studied. In section four, based on defined operations, some new averaging 

AOs are defined for TSFSs, their properties are investigated and their generalizations over the existing 



literature is proved. In section five, the theory of geometric AOs is discussed. In section six, an algorithm 

for MADM process in T-spherical fuzzy environment is developed and a numerical example is solved 

using proposed algorithm. Section seven involves the comparison of the new and existing literature and 

proposed some advantages of new work. In section eight, some concluding remarks are added 

summarizing the article and some future study is discussed. 

2. Preliminaries: 

In preliminaries, some pre-requisites are illustrated in support of proposed new work. For a better 

understanding regarding this work, please refer to [3, 11, 13, 18, 31]. In our study ahead, we use the four 

functions where 𝑠 will represent membership grade, 𝑖 denote the abstinence grade, 𝑑 standes for non-

membership grade and 𝑟 represents refusal degree of an element. 

Atanassov [3] developed the notion of IFS by considering the dissatisfaction (non-membership) degree of 

an uncertain event as well along with the satisfaction (membership) degree. The notion of IFS also described 

the hesitancy degree of an event in view of membership and non-membership degree. 

Definition 1: [3] On a set 𝑋, an IFS is of the shape 𝐼 = {(𝑠(𝑥), 𝑑(𝑥)): 0 ≤ 𝑠𝑢𝑚(𝑠, 𝑑) ≤ 1}. Further, 

𝑟(𝑥) = 1 − 𝑠𝑢𝑚(𝑠, 𝑑) represents the hesitancy level of 𝑥 ∈ 𝑋 and (𝑠, 𝑑) is termed as an IFN. 

To improve the restriction i.e. 0 ≤ 𝑠𝑢𝑚(𝑠, 𝑑) ≤ 1 subjected on Atanassov’s IFS, Yager [8] developed the 

notion of PyFS which provides a larger range of space to choose the values of the membership and non-

membership degrees from unit interval.  

Definition 2: [8] On a set 𝑋, a PyFS is of the shape 𝑃 = {(𝑠(𝑥), 𝑑(𝑥)): 0 ≤ 𝑠𝑢𝑚(𝑠2, 𝑑2) ≤ 1}. Further, 

𝑟(𝑥) = √1 − 𝑠𝑢𝑚(𝑠2, 𝑑2) represents the hesitancy level of 𝑥 ∈ 𝑋 and (𝑠, 𝑑) is termed as a PyFN. 

Cuong [10] was the one who feels that IFS and PyFS does not cover all the aspects of human opinion. He 

suggested that a human opinion not only involve satisfaction and dissatisfaction degree but in has some sort 

of abstinence and refusal component as well. To count all these factors of human opinion, Cuong [10] 

proposed a new framework of PFS which is described as follows. 

Definition 3: [10] On a set 𝑋, a PFS is of the shape 𝑃 = {(𝑠(𝑥), 𝑖(𝑥), 𝑑(𝑥)): 0 ≤ 𝑠𝑢𝑚(𝑠, 𝑖, 𝑑) ≤ 1}. 

Further, 𝑟(𝑥) = 1 − 𝑠𝑢𝑚(𝑠, 𝑖, 𝑑) represents the refusal degree of 𝑥 ∈ 𝑋 and (𝑠, 𝑖, 𝑑) is termed as a PFN. 

Following the pattern of Yager, Mahmood et al. [18] sensed the limitation of PFS i.e. 0 ≤ 𝑠𝑢𝑚(𝑠, 𝑖, 𝑑) ≤

1. This restriction makes the framework of PFS a limited one and do not allow us to allot values to all three 

grades a value from [0, 1] interval. To overcome this issue, Mahmood et al [18] introduced the notion of 

SFS and TSFS. Both these concepts are defined as follows.   

Definition 4: [18] On a set 𝑋, a SFS is of the shape 𝑆 = {(𝑠(𝑥), 𝑖(𝑥), 𝑑(𝑥)): 0 ≤ 𝑠𝑢𝑚(𝑠2, 𝑖2, 𝑑2) ≤ 1}. 

Further, 𝑟(𝑥) = √1 − 𝑠𝑢𝑚(𝑠2, 𝑖2, 𝑑2) represents the refusal degree of 𝑥 ∈ 𝑋 and (𝑠, 𝑖, 𝑑) is termed as a 

SFN. 

Definition 5: [18] On a set 𝑋, a TSFS is of the shape 𝒯 = {(𝑠(𝑥), 𝑖(𝑥), 𝑑(𝑥)): 0 ≤ 𝑠𝑢𝑚(𝑠𝑛, 𝑖𝑛, 𝑑𝑛) ≤

1} for 𝑛 ∈ ℤ+. Further, 𝑟(𝑥) = √1 − 𝑠𝑢𝑚(𝑠𝑛, 𝑖𝑛, 𝑑𝑛)
𝑛

 represents the refusal degree of 𝑥 ∈ 𝑋 and (𝑠, 𝑖, 𝑑) 

is termed as a TSFN. 



The remark below shows the generalization of TSFS over existing approaches. Some restrictions are stated 

under which a TSFS reduces to existing literature.  

Remark 1: [18] The TSFS reduces to: 

1. SFS for 𝑛 = 2. (See Definition 4) 

2. PFS for 𝑛 = 1. (See Definition 3) 

3. PyFS for 𝑛 = 2 and 𝑖 = 0. (See Definition 2) 

4. IFS for 𝑛 = 1 and 𝑖 = 0. (See Definition 1) 

The set theoretic operations of TSFSs including union, inclusion, intersection and complement were defined 

by Mahmood et al [18] and are described as:  

Definition 6: [18] For two TSFNs 𝒜 and 𝛽, their basic operations are: 

1. 𝒜 ⊆ 𝛽 iff 𝑠𝒜 ≼ 𝑠𝛽 , 𝑖𝒜 ≼ 𝑖𝛽 , 𝑑𝒜 ≽ 𝑑𝛽 for all 𝑥 ∈ 𝑋. 

2. 𝒜 = 𝛽 iff 𝒜 ⊆ 𝛽 and 𝛽 ⊆ 𝒜. 

3. 𝒜 ∪ 𝛽 = {〈𝑥,⋎ (𝑠𝒜(𝑥), 𝑠𝛽(𝑥)) ,⋏ (𝑖𝒜(𝑥), 𝑖𝛽(𝑥)) ,⋏ (𝑑𝒜(𝑥), 𝑑𝒜(𝑥))〉 ∶  𝑥 ∈ 𝑋}. 

4. 𝒜 ∩ 𝛽 = {〈𝑥,⋏ (𝑠𝒜(𝑥), 𝑠𝛽(𝑥)) ,⋏ (𝑖𝒜(𝑥), 𝑖𝛽(𝑥)) ,⋎ (𝑑𝒜(𝑥), 𝑑𝒜(𝑥))〉 ∶  𝑥 ∈ 𝑋}. 

5. 𝒜𝑐 = {〈𝑥, 𝑑𝒜(𝑥), 𝑖𝒜(𝑥), 𝑠𝒜(𝑥)〉 ∶ 𝑥 ∈ 𝑋}. 

As the manuscript is based on some new AOs and their applications in MADM problems where 

comparison of data is essential. Therefore, we need some rules for comparing TSFNs. Here we list the 

comparison rules defined by Mahmood et al. [18] which are the generalizations of comparison rules of IFSs 

[31] and PFSs [13, 15]. 

Definition 7: [18] Let 𝒜 be a TSFN for some 𝑛 ∈ ℤ+. The score value Š and accuracy value Ȃ of 𝒜 are of 

the form:  

Š(𝒜) = 𝑠𝒜
𝑛 (𝑥) − 𝑑𝒜

𝑛 (𝑥), Š(𝒜) ∈ [−1, 1] 

Ȃ(𝒜) = 𝑠𝒜
𝑛 (𝑥) + 𝑖𝒜

𝑛 (𝑥) +  𝑑𝒜
𝑛 (𝑥), Ȃ(𝒜) ∈ [0, 1]. 

If the scores of two TSFNs are distinct. Then 

 𝒜 > 𝛽 if Š(𝒜) > Š(𝛽). 

 𝒜 < 𝛽 if Š(𝒜) < Š(𝛽). 

Whenever the scores of two TSFNs becomes indifferent i.e. Š(𝒜) = Š(𝛽). Then 

 𝒜 > 𝛽 if Ȃ(𝒜) > Ȃ(𝛽). 

 𝒜 < 𝛽 if Ȃ(𝒜) < Ȃ(𝛽). 

 𝒜 ≈ 𝛽 if Ȃ(𝒜) = Ȃ(𝛽). 

 

3. Some New Operations for TSFSs 

Our aim in this section is to develope some new operations for TSFSs and investigated their results. 

These operations are the generalizations of operations of IFSs, Pythagorean FSs and PFSs providing a base 

for the AOs developed in next section. Moreover, the proposed operations are the generalizations of the 

operations developed in [9, 11, 13, 31] 



Definition 8: Consider two TSFNs 𝒜 and 𝛽 for some 𝑛 ∈ ℤ+ and let 𝜆 > 0. Then: 

1. 𝒜⨁𝛽 = ( √𝑠𝒜
𝑛 + 𝑠𝛽

𝑛 − 𝑠𝒜
𝑛 . 𝑠𝛽

𝑛𝑛
, 𝑖𝒜 . 𝑖𝛽 , 𝑑𝒜 . 𝑑𝛽). 

2. 𝒜⨂𝛽 = (𝑠𝒜 . 𝑠𝛽 , 𝑖𝒜 . 𝑖𝛽 , √𝑑𝒜
𝑛 + 𝑑𝛽

𝑛 − 𝑑𝒜
𝑛 . 𝑑𝛽

𝑛𝑛
) 

3. 𝜆 . 𝒜 = ( √1 − (1 − 𝑠𝒜
𝑛 )𝜆

𝑛
, (𝑖𝒜)𝜆, (𝑑𝒜)𝜆).  

4. 𝒜𝜆 = ((𝑠𝒜)𝜆, (𝑖𝒜)𝜆, √1 − (1 − 𝑑𝒜
𝑛 )𝜆

𝑛
) 

Remark 2: Obviously 𝒜⨁𝛽, 𝒜⨂𝛽, 𝜆. 𝒜 and 𝒜𝜆 are TSFNs. 

Remark 3: The operations proposed in Definition 8 reduces to spherical fuzzy environment for 𝑛 = 2 

and are given by: 

1. 𝒜⨁𝛽 = (√𝑠𝒜
2 + 𝑠𝛽

2 − 𝑠𝒜
2 . 𝑠𝛽

2, 𝑖𝒜 . 𝑖𝛽 , 𝑑𝒜 . 𝑑𝛽). 

2. 𝒜⨂𝛽 = (𝑠𝒜 . 𝑠𝛽 , 𝑖𝒜 . 𝑖𝛽 , √𝑑𝒜
2 + 𝑑𝛽

2 − 𝑑𝒜
2 . 𝑑𝛽

2) 

3. 𝜆 . 𝒜 = (√1 − (1 − 𝑠𝒜
2 )𝜆, (𝑖𝒜)𝜆, (𝑑𝒜)𝜆).  

4. 𝒜𝜆 = ((𝑠𝒜)𝜆, (𝑖𝒜)𝜆, √1 − (1 − 𝑑𝒜
2 )𝜆). 

Remark 4: The operations proposed in Definition 8 reduces to picture fuzzy settings for 𝑛 = 1 and are 

given by: 

1. 𝒜⨁𝛽 = (𝑠𝒜 + 𝑠𝛽 − 𝑠𝒜 . 𝑠𝛽 , 𝑖𝒜 . 𝑖𝛽 , 𝑑𝒜 . 𝑑𝛽). 

2. 𝒜⨂𝛽 = (𝑠𝒜 . 𝑠𝛽 , 𝑖𝒜 . 𝑖𝛽 , 𝑑𝒜 + 𝑑𝛽 − 𝑑𝒜 . 𝑑𝛽) 

3. 𝜆 . 𝒜 = (1 − (1 − 𝑠𝒜)𝜆, (𝑖𝒜)𝜆, (𝑑𝒜)𝜆). 

4. 𝒜𝜆 = ((𝑠𝒜)𝜆, (𝑖𝒜)𝜆, 1 − (1 − 𝑑𝒜)𝜆). 

Remark 5: The operations proposed in Definition 8 reduces to Pythagorean fuzzy environment for 𝑛 = 2 

and 𝑖𝒜 = 𝑖𝛽 = 0 and are given by: 

1. 𝒜⨁𝛽 = (√𝑠𝒜
2 + 𝑠𝛽

2 − 𝑠𝒜
2 . 𝑠𝛽

2, 𝑑𝒜 . 𝑑𝛽). 

2. 𝒜⨂𝛽 = (𝑠𝒜 . 𝑠𝛽 , √𝑑𝒜
2 + 𝑑𝛽

2 − 𝑑𝒜
2 . 𝑑𝛽

2) 

3. 𝜆 . 𝒜 = (√1 − (1 − 𝑠𝒜
2 )𝜆, (𝑑𝒜)𝜆).  

4. 𝒜𝜆 = ((𝑠𝒜)𝜆, √1 − (1 − 𝑑𝒜
2 )𝜆). 

Remark 6: The operations proposed in Definition 8 reduces to intuitionistic fuzzy settings for 𝑛 = 1 and 

𝑖𝒜 = 𝑖𝛽 = 0  are given by: 



1. 𝒜⨁𝛽 = (𝑠𝒜 + 𝑠𝛽 − 𝑠𝒜 . 𝑠𝛽 , 𝑑𝒜 . 𝑑𝛽). 

2. 𝒜⨂𝛽 = (𝑠𝒜 . 𝑠𝛽 , 𝑑𝒜 + 𝑑𝛽 − 𝑑𝒜 . 𝑑𝛽) 

3. 𝜆 . 𝒜 = (1 − (1 − 𝑠𝒜)𝜆, (𝑑𝒜)𝜆). 

4. 𝒜𝜆 = ((𝑠𝒜)𝜆, 1 − (1 − 𝑑𝒜)𝜆). 

Theorem 1: For two TSFNs 𝒜 and 𝛽 and for 𝜆, 𝜆1, 𝜆2 > 0, the following holds: 

1. 𝒜⨁𝛽 = 𝛽⨁𝒜 

2. 𝒜⨂𝛽 = 𝛽⨂𝒜 

3. 𝜆(𝒜⨁𝛽) = 𝜆𝒜⨁𝜆𝛽 

4. (𝒜⨂𝛽)𝜆 = 𝒜𝜆⨂𝛽𝜆 

5. 𝜆1𝒜⨁𝜆2𝒜 = (𝜆1 + 𝜆2)𝒜 

6. 𝒜𝜆1⨂𝒜𝜆2 = 𝒜𝜆1+𝜆2 

7. (𝒜𝑐)𝜆 = (𝜆𝒜)𝑐 

8. 𝜆(𝒜𝑐) = (𝒜𝜆)
𝑐
 

9. 𝒜𝑐⨁𝛽𝑐 = (𝒜⨂𝛽)𝑐 

10. 𝒜𝑐⨂𝛽𝑐 = (𝒜⨁𝛽)𝑐 

Proof: The proof for result 1, 3, 5, 7 and 9 are provided below. The remaining results could be proved 

analogously. Let  𝒜 = (𝑠𝒜 , 𝑖𝒜 , 𝑑𝒜) and 𝛽 = (𝑠𝛽 , 𝑖𝛽 , 𝑑𝛽) and 𝜆, 𝜆1, 𝜆2 > 0. Then 

1. 𝒜⨁𝛽 = ( √𝑠𝒜
𝑛 + 𝑠𝛽

𝑛 − 𝑠𝒜
𝑛 . 𝑠𝛽

𝑛𝑛
, 𝑖𝒜 . 𝑖𝛽 , 𝑑𝒜 . 𝑑𝛽) 

= ( √𝑠𝛽
𝑛 + 𝑠𝒜

𝑛 − 𝑠𝛽
𝑛. 𝑠𝒜

𝑛𝑛
, 𝑖𝛽 . 𝑖𝒜 , 𝑑𝛽 . 𝑑𝒜) 

= 𝛽⨁𝒜 

3. 𝜆(𝒜⨁𝛽) = 𝜆 ( √𝑠𝒜
𝑛 + 𝑠𝛽

𝑛 − 𝑠𝒜
𝑛 . 𝑠𝛽

𝑛𝑛
, 𝑖𝒜 . 𝑖𝛽 , 𝑑𝒜 . 𝑑𝛽) 

= ( √1 − (1 − ( √𝑠𝒜
𝑛 + 𝑠𝛽

𝑛 − 𝑠𝒜
𝑛 . 𝑠𝛽

𝑛𝑛
)

𝑛

)

𝜆
𝑛

, (𝑖𝒜 . 𝑖𝛽)
𝜆

, (𝑑𝒜 . 𝑑𝛽)
𝜆

) 

= ( √1 − (1 − (𝑠𝒜
𝑛 + 𝑠𝛽

𝑛 − 𝑠𝒜
𝑛 . 𝑠𝛽

𝑛))
𝜆𝑛

, (𝑖𝒜)𝜆(𝑖𝛽)
𝜆

, (𝑑𝒜)𝜆(𝑑𝛽)
𝜆

)     … (1′) 

𝜆𝒜⨁𝜆𝛽 = 𝜆(𝑠𝒜 , 𝑖𝒜 , 𝑑𝒜)⨁𝜆(𝑠𝛽 , 𝑖𝛽 , 𝑑𝛽) 

= ( √1 − (1 − 𝑠𝒜
𝑛 )𝜆

𝑛
, 𝑖𝒜 , 𝑑𝒜) ⨁ ( √1 − (1 − 𝑠𝛽

𝑛)
𝜆𝑛

, 𝑖𝛽 , 𝑑𝛽) 



= ( √( √1 − (1 − 𝑠𝒜
𝑛 )𝜆

𝑛
)

𝑛

+ ( √1 − (1 − 𝑠𝛽
𝑛)

𝜆𝑛

)

𝑛

− ( √1 − (1 − 𝑠𝒜
𝑛 )𝜆

𝑛
)

𝑛

.  ( √1 − (1 − 𝑠𝛽
𝑛)

𝜆𝑛

)

𝑛
𝑛

,

(𝑖𝒜)𝜆(𝑖𝛽)
𝜆

, (𝑑𝒜)𝜆(𝑑𝛽)
𝜆

) 

= ( √(1 − (1 − 𝑠𝒜
𝑛 )𝜆) + (1 − (1 − 𝑠𝛽

𝑛)
𝜆

) − (1 − (1 − 𝑠𝒜
𝑛 )𝜆). (1 − (1 − 𝑠𝛽

𝑛)
𝜆

)
𝑛

, (𝑖𝒜)𝜆(𝑖𝛽)
𝜆

, (𝑑𝒜)𝜆(𝑑𝛽)
𝜆

) 

= ( √1 − (1 − 𝑠𝒜
𝑛 )𝜆. (1 − 𝑠𝛽

𝑛)
𝜆𝑛

, (𝑖𝒜)𝜆(𝑖𝛽)
𝜆

, (𝑑𝒜)𝜆(𝑑𝛽)
𝜆

) 

= ( √1 − (1 − (𝑠𝒜
𝑛 + 𝑠𝛽

𝑛 − 𝑠𝒜
𝑛 . 𝑠𝛽

𝑛))
𝜆𝑛

, (𝑖𝒜)𝜆(𝑖𝛽)
𝜆

, (𝑑𝒜)𝜆(𝑑𝛽)
𝜆

)     … (2′) 

Using (1′) and (2′), we have 𝜆(𝒜⨁𝛽) = 𝜆𝒜⨁𝜆𝛽 

5.  𝜆1𝒜⨁𝜆2𝒜 = ( √1 − (1 − 𝑠𝒜
𝑛 )𝜆1

𝑛
, (𝑖𝒜)𝜆1 , (𝑑𝒜)𝜆1) ⨁ ( √1 − (1 − 𝑠𝒜

𝑛 )𝜆2
𝑛

, (𝑖𝒜)𝜆2 , (𝑑𝒜)𝜆2) 

= ( √( √1 − (1 − 𝑠𝒜
𝑛 )𝜆1

𝑛
)

𝑛

+ ( √1 − (1 − 𝑠𝒜
𝑛 )𝜆2

𝑛
)

𝑛

− ( √1 − (1 − 𝑠𝒜
𝑛 )𝜆1

𝑛
)

𝑛

.  ( √1 − (1 − 𝑠𝒜
𝑛 )𝜆2

𝑛
)

𝑛
𝑛

,

(𝑖𝒜)𝜆1(𝑖𝒜)𝜆2 , (𝑑𝒜)𝜆1(𝑑𝒜)𝜆2) 

Proceeding as we did in Proof of 3, we have, 

= ( √1 − (1 − 𝑠𝒜
𝑛 )𝜆. (1 − 𝑠𝒜

𝑛 )𝜆
𝑛

, (𝑖𝒜)𝜆1(𝑖𝒜)𝜆2 , (𝑑𝒜)𝜆1(𝑑𝒜)𝜆2)  

= ( √1 − (1 − 𝑠𝒜
𝑛 )𝜆1 . (1 − 𝑠𝒜

𝑛 )𝜆2
𝑛

, (𝑖𝒜)𝜆1(𝑖𝒜)𝜆2 , (𝑑𝒜)𝜆1(𝑑𝒜)𝜆2) 

= ( √1 − (1 − 𝑠𝒜
𝑛 )𝜆1+𝜆2

𝑛
, (𝑖𝒜)𝜆1+𝜆2 , (𝑑𝒜)𝜆1+𝜆2) 

= (𝜆1 + 𝜆2)𝒜  

7.  (𝒜𝑐)𝜆 = ((𝑠𝒜 , 𝑖𝒜 , 𝑑𝒜)𝑐)𝜆 = (𝑑𝒜 , 𝑖𝒜 , 𝑠𝒜)𝜆 

= ((𝑑𝒜)𝜆, (𝑖𝒜)𝜆, √1 − (1 − 𝑠𝒜
𝑛 )𝜆

𝑛
) 

= (𝜆𝒜)𝑐 

9.   𝒜𝑐⨁𝛽𝑐 = (𝑑𝒜 , 𝑖𝒜 , 𝑠𝒜)⨁(𝑑𝛽 , 𝑖𝛽 , 𝑠𝛽) 



= ( √𝑑𝒜
𝑛 + 𝑑𝛽

𝑛 − 𝑑𝒜
𝑛 . 𝑑𝛽

𝑛𝑛
, 𝑖𝒜 . 𝑖𝛽 , 𝑠𝒜 . 𝑠𝛽)    … (3′) 

(𝒜⨂𝛽)𝑐 = (𝑠𝒜 . 𝑠𝛽 , 𝑖𝒜 . 𝑖𝛽 , √𝑑𝒜
𝑛 + 𝑑𝛽

𝑛 − 𝑑𝒜
𝑛 . 𝑑𝛽

𝑛𝑛
)

𝑐

 

= ( √𝑑𝒜
𝑛 + 𝑑𝛽

𝑛 − 𝑑𝒜
𝑛 . 𝑑𝛽

𝑛𝑛
, 𝑖𝒜 . 𝑖𝛽 , 𝑠𝒜 . 𝑠𝛽)    … (4′) 

From (3′) and (4′), we have 𝒜𝑐⨁𝛽𝑐 = (𝒜⨂𝛽)𝑐 

The newly defined operations successfully satisfied the basic set theoretic properties showing 

their fitness and viability. 

4. T-Spherical Averaging Aggregation Operators 

In this section, the averaging operators for TSFSs are developed including TSFWA operators, 

TSFOWA operators and TSFHA operators. We investigated the basic properties of these operators like 

monotonicity, idempotency and boundedness etc. The fitness of these AOs is validated using mathematical 

induction. These operations are applied in in MADM problem in section 5. Further, in our study of 

aggregation theory 𝑤 = (𝑤1, 𝑤2, 𝑤3, … 𝑤𝑚)
𝒯

 will denote the weight vector (WV) of 𝑠, 𝑖, 𝑑 and 𝑟 for 𝑗 =

1, 2, 3, … 𝑚 such that 𝑤𝑗 > 0 and ∑ 𝑤𝑗
𝑚
𝑗=1 = 1.  

4.1.  Averaging Operators 

In this subsection, the weighted averaging operators for TSFSs are defined and their fitness is checked 

using induction. The properties of averaging operators are also investigated. The operations developed here 

generalizes the operations of IFS [31], PyFSs [9] and PFSs [13] (For proof please see Remark 8 in section 

7) 

Definition 9: For some TSFNs 𝒯𝑗, the TSFWA operator is a mapping defined as: 

𝒯𝑆𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = ∑ 𝑤𝑗𝒯𝑗

𝑚

𝑗=1

 

Theorem 2: The aggregated value of some TSFNs 𝒯𝑗 using TSFWA operator is a TSFN and is given by: 

   

𝒯𝑆𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = ( √1 − ∏(1 − 𝑠𝑗
𝑛)

𝑤𝑗

𝑚

𝑗=1

𝑛

, ∏(𝑖𝑗)
𝑤𝑗

𝑚

𝑗=1

, ∏(𝑑𝑗)
𝑤𝑗

𝑚

𝑗=1

) 

Proof: The result is proved using mathematical induction:  

For 𝑚 = 2 

𝑤1𝒯1 = ( √1 − (1 − 𝑠1
𝑛)𝑤1

𝑛 , (𝑖1)𝑤1 , (𝑑1)𝑤1) and 𝑤2𝒯2 = ( √1 − (1 − 𝑠2
𝑛)𝑤2

𝑛 , (𝑖2)𝑤2 , (𝑑2)𝑤2) 

𝑤1𝒯1⨁𝑤2𝒯2 = ( √1 − (1 − 𝑠1
𝑛)𝑤1

𝑛
, (𝑖1)𝑤1 , (𝑑1)𝑤1) ⨁ ( √1 − (1 − 𝑠2

𝑛)𝑤2
𝑛

, (𝑖2)𝑤2 , (𝑑2)𝑤2) 



= ( √( √1 − (1 − 𝑠1
𝑛)𝑤1

𝑛
)

𝑛
+ ( √1 − (1 − 𝑠2

𝑛)𝑤2
𝑛

)
𝑛

− √1 − (1 − 𝑠1
𝑛)𝑤1

𝑛
. √1 − (1 − 𝑠2

𝑛)𝑤2
𝑛𝑛

, (𝑖1)𝑤1 . (𝑖2)𝑤2 ,

(𝑑1)𝑤1 . (𝑑2)𝑤2) 

= ( √1 − (1 − 𝑠1
𝑛)𝑤1 . (1 − 𝑠2

𝑛)𝑤2
𝑛

, (𝑖1)𝑤1 . (𝑖2)𝑤2 , (𝑑1)𝑤1 . (𝑑2)𝑤2) 

= ( √1 − (1 − 𝑠1
𝑛)𝑤1 . (1 − 𝑠2

𝑛)𝑤2
𝑛

, (𝑖1)𝑤1 . (𝑖2)𝑤2 , (𝑑1)𝑤1 . (𝑑2)𝑤2) 

= ( √1 − ∏(1 − 𝑠𝑗
𝑛)

𝑤𝑗

2

𝑗=1

𝑛

, ∏(𝑖𝑗)
𝑤𝑗

2

𝑗=1

, ∏(𝑑𝑗)
𝑤𝑗

2

𝑗=1

) 

Assume that result is true for 𝑚 = 𝑘 i.e. 

𝒯𝑆𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝒌) = ( √1 − ∏(1 − 𝑠𝑗
𝑛)

𝑤𝑗

𝒌

𝑗=1

𝑛

, ∏(𝑖𝑗)
𝑤𝑗

𝒌

𝑗=1

, ∏(𝑑𝑗)
𝑤𝑗

𝒌

𝑗=1

) 

To prove this result for 𝑚 = 𝑘 + 1. Consider 

𝒯𝑆𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝒌, 𝒯𝑘+1) = ∑ 𝑤𝑗𝒯𝑗

𝑘+1

𝑗=1

= ∑ 𝑤𝑗𝒯𝑗

𝑘

𝑗=1

⨁𝑤𝑘+1𝒯𝑘+1 

= ( √1 − ∏(1 − 𝑠𝑗
𝑛)

𝑤𝑗

𝒌

𝑗=1

𝑛

, ∏(𝑖𝑗)
𝑤𝑗

𝒌

𝑗=1

, ∏(𝑑𝑗)
𝑤𝑗

𝒌

𝑗=1

) ⨁ (( √1 − (1 − 𝑠2
𝑛)𝑤𝑘+1

𝑛
) , (𝑖2)𝑤𝑘+1 , (𝑑2)𝑤𝑘+1) 

Proceeding like we did in Step 1. 

= ( √1 − ∏(1 − 𝑠𝑗
𝑛)

𝑤𝑗

𝒌+1

𝑗=1

𝑛

, ∏(𝑖𝑗)
𝑤𝑗

𝒌+1

𝑗=1

, ∏(𝑑𝑗)
𝑤𝑗

𝒌+1

𝑗=1

) 

Hence the result holds for 𝑚 = 𝑘 + 1. 

In [9, 13, 31] some important features of AOs are discussed showing their fitness and strength. Here we 

listed the characteristics of TSFWA operators.  

Theorem 3: (Characteristics of TSFWA Operators)  

1. (Idempotency) If for all 𝑗 = 1, 2, 3, … 𝑚, 𝒯𝑗 = 𝒯 = (𝑠, 𝑖, 𝑑). Then  

𝒯𝑆𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = 𝒯 

2. (Boundedness) If 𝒯− = (min
𝑗

𝑠𝑗, max
𝑗

𝑖𝑗, max
𝑗

𝑑𝑗) and 𝒯+ = (max
𝑗

𝑠𝑗, min
𝑗

𝑖𝑗, min
𝑗

𝑑𝑗). Then 



𝒯− ≤ 𝒯𝑆𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) ≤ 𝒯+ 

3. (Monotonicity) Let 𝒯𝑗 = (𝑠𝒯𝑗
, 𝑖𝒯𝑗

, 𝑑𝒯𝑗
) and 𝑃𝑗 = (𝑠𝑃𝑗

, 𝑖𝑃𝑗
, 𝑑𝑃𝑗

) be two TSFNs such that 𝒯𝑗 ≤ 𝑃𝑗 

∀ 𝑗. Then 

𝒯𝑆𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) ≤ 𝒯𝑆𝐹𝑊𝒜(𝑃1, 𝑃2, 𝑃3 … 𝑃𝑚) 

4. (Shift Invariance) For another TSFN 𝑃 = (𝑠𝑃, 𝑖𝑃 , 𝑑𝑃) 

𝒯𝑆𝐹𝑊𝒜(𝒯1 + 𝑃, 𝒯2 + 𝑃, 𝒯3 + 𝑃, … 𝒯𝑚 + 𝑃) ≤ 𝒯𝑆𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚)⨁𝑃 

5. (Homogeneity) For 𝜆 > 0  

𝒯𝑆𝐹𝑊𝒜(𝜆𝒯1, 𝜆𝒯2, 𝜆𝒯3 … 𝜆𝒯𝑚) = 𝜆. 𝒯𝑆𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) 

Proof: The proofs of these results are obvious so are omitted here. 

 The following example illustrates how TSFWA operators works. 

Example 1: Consider for 𝑛 = 2, we have three TSFNs 𝒯1 = (0.67, 0.34, 0.58), 𝒯2 = (0.43, 0.59, 0.31) 

and 𝒯3 = (0.78, 0.63, 0.48) and 𝑤 = (0.5, 0.3, 0.2)𝒯 be the WV. Then 

𝒯𝑆𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3) 

= (√1 − ((1 − 0.672)0.5)((1 − 0.432)0.3)((1 − 0.782)0.2)
2

, (0.342)0.5(0.592)0.3(0.632)0.2,

(0.582)0.5(0.312)0.3(0.22)0.2) 

𝒯𝑆𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3) = (0.64898, 0.453799, 0.374583)  

4.2.  Ordered Weighted and Hybrid Averaging Operators 

In previous section, TSFWA operators are developed and exemplified. In TSFWA operators, the 

TSFNs are weighted. Sometimes in MADM problems, when we need to weight the ordered position of the 

TSFN, then we need to develop TSFOWA operator and when we need to weight the TSFNs as well as its 

ordered position we use the concept of TSFHA operator. Therefore, in this section we developed TSFOWA 

operators and TSFHA operators and explained them with the help of examples. 

Definition 10: For some TSFNs 𝒯𝑗, the TSFOWA operator is a mapping defined as: 

𝒯𝑆𝐹𝑂𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = ∑ 𝑤𝑗𝒯𝜎(𝑗)

𝑚

𝑗=1

 

Where 𝒯𝜎(𝑗) is the jth largest of TSFNs 𝒯𝑗. 

Theorem 4: The aggregated value of some TSFNs 𝒯𝑗 using TSFOWA operator is a TSFN and is given 

by: 

   

𝒯𝑆𝐹𝑂𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = ( √1 − ∏(1 − 𝑠𝜎(𝑗)
𝑛 )

𝑤𝑗

𝑚

𝑗=1

𝑛

, ∏(𝑖𝜎(𝑗))
𝑤𝑗

𝑚

𝑗=1

, ∏(𝑑𝜎(𝑗))
𝑤𝑗

𝑚

𝑗=1

) 



Proof: The proof is similar to that of Theorem 2. 

Remark 7: Some Special Cases: 

1. For 𝑤 = (1, 0, 0, … 0)𝒯, 𝒯𝑆𝐹𝑂𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = max{𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚} 

2. For 𝑤 = (0, 0, 0, … 1)𝒯, 𝒯𝑆𝐹𝑂𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = min{𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚} 

3. For 𝑤𝑗 = 1 or 0, 𝒯𝑆𝐹𝑂𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = 𝒯𝜎(𝑗) where 𝒯𝜎(𝑗) is the jth largest of TSFNs 𝒯𝑗. 

Example 2: We solve Example 1 using TSFOWA operators. To do that, first we need to calculate the 

score values of TSFNs to arrange them in ordered positions and then simply aggregate them using 

TSFOWA operator. The score values are: Š(𝒯1) = 0.3045 , Š(𝒯2) = 0.0888, Š(𝒯3) = 0.37. Based on 

score values, the new ordered position of TSFNSs are:  

𝒯𝜎(1) = 𝒯3 = (0.78, 0.63, 0.48)  

𝒯𝜎(2) = 𝒯1 = (0.67, 0.34, 0.58)  

𝒯𝜎(3) = 𝒯2 = (0.43, 0.59, 0.31)  

𝒯𝑆𝐹𝑊𝒜(𝒯3, 𝒯1, 𝒯2) = (0.705422, 0.516755, 0.410042)  

Definition 11: For some TSFNs 𝒯𝑗, the TSFHA operator is a mapping defined as: 

𝒯𝑆𝐹𝐻𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = ∑ 𝑤𝑗𝒯̇𝜎(𝑗)

𝑚

𝑗=1

 

Where 𝒯̇𝜎(𝑗) is the jth largest of TSFNs 𝒯̇𝑗 and 𝒯̇𝑗 = 𝑚𝜔𝑗𝒯𝑗 such that 𝑚 is the number of TSFNs and 𝜔 =

(𝜔1, 𝜔2, 𝜔3 … 𝜔𝑛)𝒯 is the WV of 𝒯𝑗. 

While applying TSFHA operator, we first determine 𝒯̇𝑗 = 𝑚𝜔𝑗𝒯𝑗 using the WV 𝜔 =

(𝜔1, 𝜔2, 𝜔3 … 𝜔𝑛)𝒯. Then the weighted TSFNs 𝒯̇𝑗 are rearranged where 𝒯̇𝜎(𝑗) is the jth largest of TSFNs 

𝒯̇𝑗. Finally, the TSFHA operator is used to aggregate the TSFNs 𝒯̇𝑗. Using the basic operations of TSFNs, 

the following theorem is proposed. 

Theorem 5: The aggregated value of some TSFNs 𝒯𝑗 using TSFHA operator is a TSFN and is given by: 

𝒯𝑆𝐹𝐻𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = ( √1 − ∏(1 − 𝑠̇𝜎(𝑗)
𝑛 )

𝑤𝑗

𝑚

𝑗=1

𝑛

, ∏(𝑖̇𝜎(𝑗))
𝑤𝑗

𝑚

𝑗=1

, ∏(𝑑̇𝜎(𝑗))
𝑤𝑗

𝑚

𝑗=1

) 

Proof: The proof is similar to that of Theorem 2. 

Example 3: Consider for 𝑛 = 2, we have three TSFNs 𝒯1 = (0.67, 0.34, 0.58), 𝒯2 = (0.43, 0.59, 0.31) 

and 𝒯3 = (0.78, 0.63, 0.48) and 𝜔 = (0.4, 0.35, 0.25)𝒯 be the WV of given TSFNs while 𝑤 =

(0.5, 0.3, 0.2)𝒯 is the aggregated associated weighted vector. Then 

𝒯̇1 = 3𝜔1𝒯1 = 3 × 0.4 𝒯1 = (√1 − (1 − 0.672)3×0.42
, (0.342)3×0.4, (0.582)3×0.4) = (0.71, 0.27, 0.52) 

Similarly, 𝒯̇2 = (0.44, 0.57, 0.29) and 𝒯̇3 = (0.71, 0.71, 0.58). Now we use score function to find the 

ordered position of 𝒯̇𝑗 as follows:  



Š(𝒯̇1) = 0.2337 , Š(𝒯̇2) = 0.1095, Š(𝒯̇3) = 0.1677. Based on score values, the new ordered position of 

TSFNSs are:  

𝒯̇𝜎(1) = 𝒯̇1 = (0.7, 0.08, 0.27)  

𝒯̇𝜎(2) = 𝒯̇3 = (0.7, 0.5, 0.33)  

𝒯̇𝜎(3) = 𝒯̇2 = (0.44, 0.33, 0.08)  

𝒯𝑆𝐹𝑊𝒜(𝒯̇1, 𝒯̇3, 𝒯̇2) = (0.65286, 0.409917, 0.446074)  

Theorem 6: If we assume the WV 𝑤 to be 𝑤 = (
1

𝑚
,

1

𝑚
,

1

𝑚
, …

1

𝑚
)

𝒯
. Then the TSFHA operator reduces to 

TSFWA operator.  

Proof: As 𝒯̇𝑗 = 𝑚𝜔𝑗𝒯𝑗 and 𝑤 = (
1

𝑚
,

1

𝑚
,

1

𝑚
, …

1

𝑚
)

𝒯
. So 𝑤𝑗𝒯̇𝑗 = 𝜔𝑗𝒯𝑗 and 

𝒯𝑆𝐹𝐻𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = ∑ 𝑤𝑗𝒯̇𝜎(𝑗)

𝑚

𝑗=1

= ∑ 𝜔𝑗𝒯𝑗

𝑚

𝑗=1

= 𝒯𝑆𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) 

Theorem 7: If we assume the WV 𝜔 to be 𝜔 = (
1

𝑚
,

1

𝑚
,

1

𝑚
, …

1

𝑚
)

𝒯
. Then the TSFHA operator reduces to 

TSFOWA operator. 

Proof: Straightforward. 

5. T-Spherical Fuzzy Geometric Operators 

In this section, the geometric operators for TSFSs are developed including TSFWG operator, TSFOWG 

operator and TSFHG operator. We investigated the basic properties of these operators like monotonicity, 

idempotency and boundedness etc. The fitness of these AOs is checked using mathematical induction.  

5.1.  Weighted Geometric Operators 

In this subsection, the weighted geometric operator for TSFSs is defined and its fitness is checked using 

mathematical induction. The properties of averaging operator are also investigated. The operations 

developed here generalizes the operations of IFS, PyFSs and PFSs (For proof please see Remark 8 in section 

7) 

Definition 12: For some TSFNs 𝒯𝑗, the TSFWG operator is a mapping defined as: 

𝒯𝑆𝐹𝑊𝐺(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = ∏ 𝒯
𝑗

𝑤𝑗

𝑚

𝑗=1

  

Theorem 8: The aggregated value of some TSFNs 𝒯𝑗 using TSFWG operator is a TSFN and is given by: 

𝒯𝑆𝐹𝑊𝐺(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = (∏(𝑠𝑗)
𝑤𝑗

𝑚

𝑗=1

, ∏(𝑖𝑗)
𝑤𝑗

𝑚

𝑗=1

, √1 − ∏(1 − 𝑑𝑗
𝑛)

𝑤𝑗

𝑚

𝑗=1

𝑛

 ) 

Proof: The result is proved using mathematical induction:  



For 𝑚 = 2 

𝑤1𝒯1 = ((𝑠1)𝑤1 , (𝑖1)𝑤1 , √1 − (1 − 𝑑1
𝑛)𝑤1

𝑛
) and 𝑤2𝒯2 = ((𝑠2)𝑤2 , (𝑖2)𝑤2 , √1 − (1 − 𝑑2

𝑛)𝑤2
𝑛

) 

𝑤1𝒯1 ⊗ 𝑤2𝒯2 = ((𝑠1)𝑤1 , (𝑖1)𝑤1 , √1 − (1 − 𝑑1
𝑛)𝑤1

𝑛
) ⊗ ((𝑠2)𝑤2 , (𝑖2)𝑤2 , √1 − (1 − 𝑑2

𝑛)𝑤2
𝑛

) 

= (

(𝑠1)𝑤1 . (𝑠2)𝑤2 , (𝑖1)𝑤1 . (𝑖2)𝑤2 ,

  √( √1 − (1 − 𝑑1
𝑛)𝑤1

𝑛
)

𝑛
+ ( √1 − (1 − 𝑑2

𝑛)𝑤2
𝑛

)
𝑛

− √1 − (1 − 𝑑1
𝑛)𝑤1

𝑛
. √1 − (1 − 𝑑2

𝑛)𝑤2
𝑛𝑛 ) 

= ((𝑠1)𝑤1 . (𝑠2)𝑤2 , (𝑖1)𝑤1 . (𝑖2)𝑤2 , √1 − (1 − 𝑑1
𝑛)𝑤1 . (1 − 𝑑2

𝑛)𝑤2
𝑛

) 

= (∏(𝑠𝑗)
𝑤𝑗

2

𝑗=1

, ∏(𝑖𝑗)
𝑤𝑗

2

𝑗=1

, √1 − ∏(1 − 𝑑𝑗
𝑛)

𝑤𝑗

2

𝑗=1

𝑛

 ) 

True for 𝑚 = 2. Assume that result holds for 𝑚 = 𝑘 i.e. 

𝒯𝑆𝐹𝑊𝐺(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑘) = (∏(𝑠𝑗)
𝑤𝑗

𝑘

𝑗=1

, ∏(𝑖𝑗)
𝑤𝑗

𝑘

𝑗=1

, √1 − ∏(1 − 𝑑𝑗
𝑛)

𝑤𝑗

𝑘

𝑗=1

𝑛

 ) 

To prove for 𝑚 = 𝑘 + 1. Consider 

𝒯𝑆𝐹𝑊𝐺(𝒯1, 𝒯2, 𝒯3 … 𝒯𝒌, 𝒯𝑘+1) = ∏ 𝒯
𝑗

𝑤𝑗

𝑘+1

𝑗=1

= ∏ 𝒯
𝑗

𝑤𝑗

𝑘

𝑗=1

⊗ 𝒯𝑘+1
𝑤𝑘+1 

= (∏(𝑠𝑗)
𝑤𝑗

𝑘

𝑗=1

, ∏(𝑖𝑗)
𝑤𝑗

𝑘

𝑗=1

, √1 − ∏(1 − 𝑑𝑗
𝑛)

𝑤𝑗

𝑘

𝑗=1

𝑛

 ) ⨁ ((𝑠2)𝑤𝑘+1 , (𝑖2)𝑤𝑘+1 , ( √1 − (1 − 𝑑2
𝑛)𝑤𝑘+1

𝑛
)) 

Finally, 

= (∏(𝑠𝑗)
𝑤𝑗

𝑘+1

𝑗=1

, ∏(𝑖𝑗)
𝑤𝑗

𝑘+1

𝑗=1

, √1 − ∏(1 − 𝑑𝑗
𝑛)

𝑤𝑗

𝑘+1

𝑗=1

𝑛

 ) 

Hence the result holds for 𝑚 = 𝑘 + 1. 

 In [9, 13, 31] some important features of AOs are discussed showing their validity. Here we listed 

the characteristics of TSFWG operators.  

Theorem 9: (Characteristics of TSFWG Operators)  

1. (Idempotency) If for all 𝑗 = 1, 2, 3, … 𝑚, 𝒯𝑗 = 𝒯 = (𝑠, 𝑖, 𝑑). Then  

𝒯𝑆𝐹𝑊𝐺(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = 𝒯 



2. (Boundedness) If 𝒯− = (min
𝑗

𝑠𝑗, max
𝑗

𝑖𝑗, max
𝑗

𝑑𝑗) and 𝒯+ = (max
𝑗

𝑠𝑗, min
𝑗

𝑖𝑗, min
𝑗

𝑑𝑗). Then 

𝒯− ≤ 𝒯𝑆𝐹𝑊𝐺(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) ≤ 𝒯+ 

3. (Monotonicity) Let 𝒯𝑗 = (𝑠𝒯𝑗
, 𝑖𝒯𝑗

, 𝑑𝒯𝑗
) and 𝑃𝑗 = (𝑠𝑃𝑗

, 𝑖𝑃𝑗
, 𝑑𝑃𝑗

) be two TSFNs such that 𝒯𝑗 ≤ 𝑃𝑗 

∀ 𝑗. Then 

𝒯𝑆𝐹𝑊𝐺(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) ≤ 𝒯𝑆𝐹𝑊𝐺(𝑃1, 𝑃2, 𝑃3 … 𝑃𝑚) 

Proof: The proofs of these results are obvious so are omitted here. 

Example 4: Consider for 𝑛 = 2, we have three TSFNs 𝒯1 = (0.67, 0.34, 0.58), 𝒯2 = (0.43, 0.59, 0.31) 

and 𝒯3 = (0.78, 0.63, 0.48) and 𝑤 = (0.5, 0.3, 0.2)𝒯 be the WV. Then 

𝒯𝑆𝐹𝑊𝐺(𝒯1, 𝒯2, 𝒯3) 

= (
(0.582)0.5(0.432)0.3(0.782)0.2, (0.342)0.5(0.592)0.3(0.632)0.2,

 √1 − ((1 − 0.582)0.5)((1 − 0.312)0.3)((1 − 0.482)0.2)
2 ) 

𝒯𝑆𝐹𝑊𝐺(𝒯1, 𝒯2, 𝒯3) = (0.60464, 0.453799, 0.385256) 

5.2. Ordered Weighted Geometric and Hybrid Geometric Operators 

In TSFWG operators, the TSFNs are weighted. Sometimes in MADM problems, when we need to 

weight the ordered position of the TSFNs, then we need to develop the ordered weighted geometric 

operators and when we need to weight the TSFNs as well as its ordered position, we used the concept of 

hybrid geometric operators. Therefore, in this section we developed TSFOWG operators and TSFHG 

operators. 

Definition 13: For some TSFNs 𝒯𝑗, the TSFOWG operator is a mapping defined as: 

𝒯𝑆𝐹𝑂𝑊𝐺(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = ∏ 𝒯
𝜎(𝑗)

𝑤𝑗

𝑚

𝑗=1

 

Where 𝒯𝜎(𝑗) is the jth largest of TSFNs 𝒯𝑗. 

Theorem 10: The aggregated value of some TSFNs 𝒯𝑗 using TSFOWG operator is a TSFN and is given 

by: 

𝒯𝑆𝐹𝑂𝑊𝐺(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = (∏(𝑠𝜎(𝑗))
𝑤𝑗

𝑚

𝑗=1

, ∏(𝑖𝜎(𝑗))
𝑤𝑗

𝑚

𝑗=1

, √1 − ∏(1 − 𝑑𝜎(𝑗)
𝑛 )

𝑤𝑗

𝑚

𝑗=1

𝑛

 ) 

Proof: The proof is similar to that of Theorem 2. 

Example 5: We solve Example 1 using TSFOWG operators. To do that, first we need to calculate the 

score values of TSFNs to arrange them in ordered positions and then simply aggregate them using 

TSFOWG operator. The score values are: Š(𝒯1) = 0.3045 , Š(𝒯2) = 0.0888, Š(𝒯3) = 0.37. Based on 

score values, the new ordered position of TSFNSs are:  

𝒯𝜎(1) = 𝒯3 = (0.78, 0.63, 0.48)  



𝒯𝜎(2) = 𝒯1 = (0.67, 0.34, 0.58)  

𝒯𝜎(3) = 𝒯2 = (0.43, 0.59, 0.31)  

𝒯𝑆𝐹𝑊𝐺(𝒯3, 𝒯1, 𝒯2) = (0.856729, 0.516755, 0.322408) 

Definition 14: For some TSFNs 𝒯𝑗, the TSFHG operator is a mapping defined as: 

𝒯𝑆𝐹𝐻𝐺(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = ∏ 𝒯̇
𝜎(𝑗)

𝑤𝑗

𝑚

𝑗=1

 

Where 𝒯̇𝜎(𝑗) is the jth largest of TSFNs 𝒯̇𝑗 and 𝒯̇𝑗 = 𝒯
𝑗

𝑚𝜔𝑗
 such that 𝑚 is the number of TSFNs and 𝜔 =

(𝜔1, 𝜔2, 𝜔3 … 𝜔𝑛)𝒯 is the WV of 𝒯𝑗. 

While applying TSFHG operator, we first determine 𝒯̇𝑗 = 𝒯
𝑗

𝑚𝜔𝑗
 using the WV 𝜔 =

(𝜔1, 𝜔2, 𝜔3 … 𝜔𝑛)𝒯. Then the weighted TSFNs 𝒯̇𝑗 are rearranged where 𝒯̇𝜎(𝑗) is the jth largest of TSFNs 

𝒯̇𝑗. Finally, the TSFHG operator is used to aggregate the TSFNs 𝒯̇𝑗. Using the basic operations of TSFNs, 

the following theorem is proposed. 

Theorem 11: The aggregated value of some TSFNs 𝒯𝑗 using TSFHG operator is a TSFN and is given by: 

𝒯𝑆𝐹𝐻𝐺(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = (∏(𝑠̇𝜎(𝑗))
𝑤𝑗

𝑚

𝑗=1

, ∏(𝑖𝜎̇(𝑗))
𝑤𝑗

𝑚

𝑗=1

, √1 − ∏(1 − 𝑑̇𝜎(𝑗)
𝑛 )

𝑤𝑗

𝑚

𝑗=1

𝑛

 ) 

Proof: The proof is similar to that of Theorem 2. 

The following example illustrate how hybrid operators works. 

Example 6: Consider for 𝑛 = 2, we have three TSFNs 𝒯1 = (0.67, 0.34, 0.58), 𝒯2 = (0.43, 0.59, 0.31) 

and 𝒯3 = (0.78, 0.63, 0.48) and 𝜔 = (0.4, 0.35, 0.25)𝒯 be the WV of given TSFNs while 𝑤 =

(0.5, 0.3, 0.2)𝒯 is the aggregated associated weighted vector. Then 

𝒯̇1 = 𝒯1
3𝜔1 =  𝒯1

3×0.4 

= ((0.672)3×0.4, (0.342)3×0.4, √1 − (1 − 0.582)3×0.42
) 

= (0.618429, 0.274015, 0.623421) 

Similarly, 𝒯̇2 = (0.412232, 0.574638, 0.317261) and 𝒯̇3 = (0.829986, 0.70714, 0.422288). Now we 

use score function to find the ordered position of 𝒯̇𝑗 as follows:  

Š(𝒯̇1) = 0.006199 , Š(𝒯̇2) = −0.06928, Š(𝒯̇3) = −0.51055. Based on score values, the new ordered 

position of TSFNSs are:  

𝒯̇𝜎(1) = 𝒯̇1 = (0.618429, 0.274015, 0.623421)  

𝒯̇𝜎(2) = 𝒯̇3 = (0.829986, 0.70714, 0.422288)  

𝒯̇𝜎(3) = 𝒯̇2 = (0.412232, 0.574638, 0.317261)  



𝒯𝑆𝐹𝑊𝐺(𝒯̇1, 𝒯̇3, 𝒯̇2) = (0.483282, 0.41902, 0.683548) 

Theorem 12: If we assume the WV 𝑤 to be 𝑤 = (
1

𝑚
,

1

𝑚
,

1

𝑚
, …

1

𝑚
)

𝒯
. Then the TSFHG operator reduces to 

TSFWG operator.  

Proof: As 𝒯̇𝑗 = 𝒯
𝑗

𝑚𝜔𝑗
 and 𝑤 = (

1

𝑚
,

1

𝑚
,

1

𝑚
, …

1

𝑚
)

𝒯
. So 𝒯̇

𝑗

𝑤𝑗 = 𝒯
𝑗

𝜔𝑗
 and 

𝒯𝑆𝐹𝐻𝐺(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = ∏ 𝒯̇
𝜎(𝑗)

𝑤𝑗

𝑚

𝑗=1

= ∏ 𝒯
𝑗

𝑤𝑗

𝑚

𝑗=1

= 𝒯𝑆𝐹𝑊𝐺(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) 

Theorem 13: If we assume the WV 𝜔 to be 𝜔 = (
1

𝑚
,

1

𝑚
,

1

𝑚
, …

1

𝑚
)

𝒯
. Then the TSFHG operator reduces to 

TSFOWG operator. 

Proof: Straightforward.  

6. Multi-Attribute Decision Making 

In MADM process, we rank a set of alternatives 𝒜𝑗 based on some attributes 𝐾𝑗 having weight vector 

𝑤. In this phenomenon, a panel of decision makers evaluated the alternatives 𝒜𝑗 and provided their 

information in the form of TSFNs i.e. in a decision matrix containing TSFNs. Then the different types of 

aggregators are utilized to aggregate the information for the evaluation of best alternatives. The steps of 

algorithm of MADM process are described below: 

6.1.  Algorithm: 

Step 1: The information in the form of TSFNs under some attributes about the alternatives are gathered and 

a decision matrix is formed.  

Step 2: In step 2, the data provided by the decision makers is aggregated using AOs of TSFNs.  

Step 3: In step 3, the scores of the aggregated data using Definition 7 is obtained.  

Step 4: The final step involves the ranking of score values and most suitable alternative is obtained. 

To demonstrate the MADM algorithm, we present a numerical example adapted form [20]. The 

data provided in this example could not be handled using IFSs or PFSs which proves the novelty of proposed 

operators in the environment of TSFSs. 

Example 7: A multinational company is designing its financial policy for the upcoming year about where 

to invest to get a potential profit. For this, the research department of the company came with four plans 

about where to invest after some initial screening. These four alternatives are, 𝑃1: Asian Markets, 𝑃2: Local 

Markets, 𝑃3: European Markets and 𝑃4: African Markets. The evaluation of suitable market to invest in is 

based on four attributes which are, 𝒜1: The growth perspective, 𝒜2: risk perspective, 𝒜3: political and 

social perspective and 𝒜4: environmental perspective. The WV is 𝑤 = (0.2, 0.1, 0.3, 0.4)𝒯. The stepwise 

demonstration of MADM process is as follows: 

Step 1: The formation of decision matrix in Table 1. Note that all the data provided in Table 1 are purely 

TSFNs for 𝑛 = 3.  

 𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒 



𝑷𝟏 (0.53, 0.33, 0.38) (0.65,0.24,0.74) (0.61, 0.39, 0.45) (0.55, 0.88, 0.29) 

𝑷𝟐 (0.40, 0.71, 0.15) (0.48, 0.46,0.67) (0.69, 0.46, 0.29) (0.61, 0.73, 0.43) 

𝑷𝟑 (0.33, 0.53, 0.79) (0.71, 0.49, 0.16) (0.53, 0.39, 0.84) (0.50,0.90, 0.01) 

𝑷𝟒 (0.64, 0.38,0.73) (0.33,0.64,0.76) (0.27,0.89,0.07) (0.74, 0.36,0.19) 

Table 1 (Decision Matrix) 

Step 2: The data provided by the decision makers in Table 1 is aggregated using TSFWA operators in this 

step. The steps involved are already explained, here we just provided the results which are: 

𝒯1 = 𝒯𝑆𝐹𝑊𝒜(𝒯11, 𝒯12, 𝒯13, 𝒯14) = (0.548023, 0.49755, 0.383533)  

𝒯2 = 𝒯𝑆𝐹𝑊𝒜(𝒯21, 𝒯22, 𝒯23, 𝒯24) = (0.602926, 0.603509, 0.323543)  

𝒯3 = 𝒯𝑆𝐹𝑊𝒜(𝒯31, 𝒯32, 𝒯33, 𝒯34) = (0.521966, 0.592777, 0.11946)  

𝒯4 = 𝒯𝑆𝐹𝑊𝒜(𝒯41, 𝒯42, 𝒯43, 𝒯44) = (0.623935, 0.505723, 0.211727)  

Step 3: Now we compute the score values of the date obtained in Step 2. 

 Š(𝒯1) = (0.548023)3 − (0.056417)3 = 0.10817  

Š(𝒯2) = (0.602926)3 − (0.033869)3 = 0.185307  

Š(𝒯3) = (0.521966)3 − (0.001705)3 = 0.140504  

Š(𝒯4) = (0.623935)3 − (0.009491)3 = 0.233403  

Step 4: Step 4 involves the comparison of score values obtained in Step 3. The comparison is as follows:  

Š(𝒯4) > Š(𝒯2) >  Š(𝒯3) > Š(𝒯1) 

Clearly, the score of 𝒯4 is greater among all so the firm needed to go with policy 4 i.e. to invest in 

African markets according to the evaluation of the data using TSFWA operators. Such type of decision 

making could be very helpful in management sciences problems, economic problems and problems of 

engineering and computer sciences where one need to choose among some alternatives based on expert’s 

opinion. 

7. Comparative Study and Advantages: 

In this section we are about to establish a comparative study of proposed study and existing work 

which will demonstrate the diverse nature of TSFSs and its AOs along with the limitations of IFSs, 

Pythagorean FSs and PFSs. FSs, IFSs, Pythagorean FSs and PFSs are all special cases of TSFS as described 

in [18]. Here we are interested in showing that the proposed AOs are the generalizations of AOs of IFSs 

[31] Pythagorean fuzzy sets [9] and PFSs [13]. The following remark will explain how the AOs of IFSs, 

Pythagorean FSs and PFSs becomes particular cases of T-spherical fuzzy AOs. 

Remark 8: Consider the TSFWA and TSFWG operator as follows: 

𝒯𝑆𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = ( √1 − ∏(1 − 𝑠𝑗
𝑛)

𝑤𝑗

𝑚

𝑗=1

𝑛
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𝑚

𝑗=1

) 
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 ) 

If we take the 𝑛 = 2, we obtained weighted averaging and geometric operators of SFSs given as: 
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If we take the 𝑛 = 1, we obtained weighted averaging and geometric operator of PFSs proposed by Garg 

[13] and are given as follows: 

𝑃𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = (1 − ∏(1 − 𝑠𝑗)
𝑤𝑗
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If we take the 𝑛 = 2 and 𝑖 = 0, we obtained averaging and geometric operators of PyFSs developed by 

[9] and are given as follows: 

𝑃𝑦𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = (√1 − ∏(1 − 𝑠𝑗
2)

𝑤𝑗
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2
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If we take the 𝑛 = 1 and 𝑖 = 0, we obtained averaging and geometric operators defined in [31] and are 

given as follows: 

𝐼𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = (1 − ∏(1 − 𝑠𝑗)
𝑤𝑗

𝑚
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Therefore, it is proved that the AOs proposed in this manuscript are the generalizations of AOs of IFSs, 

Pythagorean FSs and PFSs and can handle the data which the existing tools could not. 

As described in first section of the manuscript, that the theory of IFSs and Pythagorean FSs can 

only deal with situations where we face two types of options. These types of structures failed to describe 

the voting phenomena or situations where one has more than two opinions as described in [10, 11]. Also, 

Mahmood at all [18] pointed out towards the limitation of IFSs, Pythagorean FSs and PFSs and proposed 

SFSs and TSFSs that can handle not only the data provided in existing environments but also the data where 

the existing structures failed to be applied as discussed in [18, 19]. In view of all these facts, it is claimed 

that the aggregation theory proposed in this manuscript is better than the theory that is already exist and can 

model human opinion more effectively. 

Further, we show that the proposed AOs of TSFSs can be applied to solve the problems lying in the 

environment of IFSs, PyFSs and PFSs etc. For this purpose, we consider Example 7 and dropped the 

abstinence degree from each triplet of Table 1. The new decision matrix obtained is provided in Table 2. 

 𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒 

𝑷𝟏 (0.53, 0.38) (0.65, 0.74) (0.61, 0.45) (0.55, 0.29) 

𝑷𝟐 (0.40, 0.15) (0.48, 0.67) (0.69, 0.29) (0.61, 0.43) 

𝑷𝟑 (0.33, 0.79) (0.71, 0.16) (0.53, 0.84) (0.50, 0.01) 

𝑷𝟒 (0.64, 0.73) (0.33, 0.76) (0.27,0.07) (0.74, 0.19) 

Table 2 (Decision Matrix after dropping the abstinence grade) 

The information obtained after dropping the abstinence grade are now PyFNs as for all the duplets, the sum 

of square of the membership and non-membership grade is less than 1. Therefore, we use the following 

special case of the Remark 8 to aggregate the information obtained in Table 2.  

𝑃𝐹𝑊𝒜(𝒯1, 𝒯2, 𝒯3 … 𝒯𝑚) = (1 − ∏(1 − 𝑠𝑗)
𝑤𝑗

𝑚

𝑗=1

, ∏(𝑖𝑗)
𝑤𝑗

𝑚

𝑗=1

, ∏(𝑑𝑗)
𝑤𝑗

𝑚

𝑗=1

) 

The aggregated results are 

𝒯1 = (0.548023, 0.383533) 

𝒯2 = (0.602926, 0.323543) 

𝒯3 = (0.521966, 0.11946) 

𝒯4 = (0.623935, 0.211727) 

To find the most suitable alternative, we use the score function and the score values are given by: 

Š(𝒯1) = (0.548023)3 − (0.383533)3 = 0.10817 

Š(𝒯2) = (0.602926)3 − (0.323543)3 = 0.185307 

Š(𝒯3) = (0.521966)3 − (0.11946)3 = 0.140504 

Š(𝒯4) = (0.623935)3 − (0.11946)3 = 0.233403 

Based on the score values, we obtained the following ranking pattern 



Š(𝒯4) > Š(𝒯2) >  Š(𝒯3) > Š(𝒯1) 

The result is consistent, and it shows that the proposed TSFWA operators are applicable in existing fuzzy 

environments and can solve any problem without any limitations. 

8. Conclusion  

In this manuscript, we developed some AOs for the novel concept of TSFS which a generalization of 

IFS is basically, Pythagorean FS and PFS. We discussed some basic theory related to IFS, PFS, SFS and 

TSFS including basic operations. Then we proposed some new operations for TSFSs, studied its several 

properties and proposed some results. Based on new operations, the concept of weighted averaging and 

geometric operators for TSFSs are proposed and their fitness is established using principle of mathematical 

induction. We also studied some characteristics like boundedness, idempotency, monotonicity and shift 

invariance. To meet some other situations of real-life problems, we defined ordered weighted averaging 

(geometric) and hybrid averaging (geometric) AOs for TSFSs as well. The defined AOs are illustrated with 

the help of some examples and a MADM problems is discussed considering the proposed work. Finally, a 

comparative study of current and new operations is established showing the significance of new work and 

some advantages of new proposed work. The current work can be extended to complex spherical and T-

spherical fuzzy environments [53, 54] in near future. Further, the some other important applications such 

as transportation problems [55] and the evaluation of hospital performance [56] can be discussed in T-

spherical fuzzy environment. 
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