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ABSTRACT: The main objective of this paper is to introduce the idea of picture fuzzy 

labelling of graphs and the concepts of strong arc, partial cut node, bridge of picture fuzzy 

labelling graphs, picture fuzzy labelling tree and cycle along with their properties and results. 

In addition, an application of the picture fuzzy graph labelling model for the human 

circulatory system has been discussed. 
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INTRODUCTION: 

Fuzzy set theory was published by Zadeh [1] in 1965. In 1986, Atanassov [2] 

established the view of intuitionistic fuzzy set. A set which has the elements with degree of 

membership is a fuzzy set, whereas the intuitionistic fuzzy set has the degree of membership 

and non-membership. Intuitionistic fuzzy has many advantages in handling vagueness and 

uncertainty when compared with the fuzzy set. Smarandache [3] coined the idea of 

Neutrosophic Set (NS) which is a brand-new dimension to the sets and it was applied in many 

fields especially in the field of decision making [4-9]. The modified form of fuzzy set and 

intuitionistic set, the picture fuzzy set was coined by Cuong and Kreinovich [10-11]. Picture 

fuzzy set (PFS) has three memberships namely, positive, neutral and negative for each 

element. Again, Coung et al. [12] investigated the fundamental fuzzy operators namely, 

negations, conjunctions, disjunctions and implications on PFS. Application of fuzzy is used 

in many fields along with chemical industry, robotics, industrial automation, defence, air 

conditioners, electronics, power engineering, control image processing, washing machines, 

structures engineering and facial pattern recognition.  

The graph theory concept was presented by Euler in 1736. A graph G is composed of 

fixed sets of vertices 𝑉(𝐺) and edges 𝐸(𝐺). In a simple graph, two of the vertices in G are 

related if there exists an edge (𝑣𝑖 , 𝑣𝑗) 𝑖𝑛 𝐸(𝐺) connecting the vertices 𝑣𝑖  𝑎𝑛𝑑 𝑣𝑗  in 𝑉(𝐺). The 

idea of graph labelling was introduced by Rosa [13]. The practical troubles are represented 

via graphs and are applied in many fields which includes Computer science, Electrical 

Engineering, Mathematics, Physics, Chemistry, Linguistics, Computer Network, Social 

Sciences, Biology, etc. 

Fuzzy graphs from fuzzy relations become introduced with the aid of Kauffmann 

[14]. It turned to Rosenfeld [15] who advanced fuzzy graphs in 1975. The labelling of fuzzy 

graphs was done by A.N. Gani et.al [16] and they additionally discussed the properties of 

FLG. There are many types of fuzzy labelling such as cordial, magic and graceful etc. Fuzzy 

magic labelling has been applied for fuzzy graphs, intuitionistic fuzzy graphs [17], 

neutrosophic path and star graphs [18]. Fuzzy graphs have been advanced with the 



introduction of intuitionistic fuzzy graphs, neutrosophic graphs, hesitant and so on. Picture 

fuzzy graph [19] came to be advanced from the picture fuzzy relation.  

 The crux of this work is to introduce the picture fuzzy labelling of graphs and 

investigate some of the properties of picture fuzzy labelling. Also we will discuss the 

application of picture fuzzy labelling to circulatory system model. 

 

PRELIMINARIES: 

Definition 2.1: Let 𝑋 be a fixed set with elements 𝑎. Then a fuzzy set 𝐴 in 𝑋 is defined as 

𝐴 = {(𝑎, 𝜇𝐴(𝑎))| 𝑎 ∈ 𝑋)} where 𝜇𝐴(𝑎) ∈ [0,1] is called the membership function for the 

fuzzy set 𝐴. 

 

Definition 2.2: A fuzzy graph 𝐺 = (𝑉, 𝜎, µ) with 𝜎: 𝑉 → [0, 1], µ: 𝑉 × 𝑉 → [0, 1]such that 

for all 𝑎, 𝑏 𝑖𝑛 𝑉, µ(𝑎, 𝑏) ≤ 𝜎(𝑎) ˄ 𝜎(𝑏). A fuzzy graph G is called a fuzzy labelling graph if 

µ(𝑎, 𝑏) < 𝜎(𝑎) ˄ 𝜎(𝑏). 

 

Definition 2.3: An intuitionistic fuzzy set 𝐷, in a non-void set 𝑋 is defined as 𝐷 =

{(𝑎, 𝜇𝐷(𝑎), 𝛾𝐷(𝑎)) | 𝑎 ∈ 𝑋)} where 𝜇𝐷: 𝑋 → [0,1] and 𝛾𝐷: 𝑋 → [0,1] denote the degree of 

membership and non-membership respectively, and  0 ≤ 𝜇𝐷(𝑎) + 𝛾𝐷(𝑎) ≤ 1. 

 

Definition 2.4: A picture fuzzy set [10] L in X is defined by 𝐿 = {(𝑎,  𝜇𝐿(𝑎), 𝜂𝐿(𝑎),

𝛾𝐿(𝑎)) | 𝑎 ∈ 𝑋)}, where 𝜇𝐿(𝑎), 𝜂𝐿(𝑎), 𝛾𝐿(𝑎) ∈ [0,1] denote the positive, neutral and 

negative membership degree of the element 𝑎 in L and 𝜇𝐿(𝑎), 𝜂𝐿(𝑎), 𝛾𝐿(𝑎) follow the 

condition that 0 ≤ 𝜇𝐿(𝑎) + 𝜂𝐿(𝑎) + 𝛾𝐿(𝑎) ≤ 1. 

 

Definition 2.5: 𝐺 = (𝑉, 𝜎, µ) with 𝑉 = {𝑎1, 𝑎2, … , 𝑎𝑛} (where 𝜎 = (𝜎1, 𝜎2, 𝜎3) and µ =

(µ1, µ2, µ3)) and 𝜎1: 𝑉 → [0, 1], 𝜎2: 𝑉 → [0, 1], 𝜎3: 𝑉 → [0, 1] and µ1: 𝑉 × 𝑉 → [0, 1], µ2: 𝑉 ×

𝑉 → [0, 1] and µ3: 𝑉 × 𝑉 → [0, 1] representing the positive, neutral and negative membership 

functions of vertices and edges respectively satisfying the condition 

µ1(𝑎𝑖, 𝑎𝑗) ≤ 𝜎1(𝑎𝑖) ˄ 𝜎1(𝑎𝑗), 

µ2(𝑎𝑖, 𝑎𝑗) ≤ 𝜎2(𝑎𝑖) ˄ 𝜎2(𝑎𝑗), 

µ3(𝑎𝑖, 𝑎𝑗) ≤ 𝜎3(𝑎𝑖) ˅ 𝜎3(𝑎𝑗). 

where 0 ≤ µ1(𝑎𝑖, 𝑎𝑗) + µ2(𝑎𝑖, 𝑎𝑗) + µ3(𝑎𝑖, 𝑎𝑗) ≤ 1 for every 𝑎𝑖, 𝑎𝑗 ∈ 𝑉(𝑖, 𝑗 = 1, 2, … , 𝑛) is 

said to be a picture fuzzy graph [4] (PFG). 

 

 

 

 

 

PICTURE FUZZY LABELLING GRAPHS: 

 

Definition 3.1: 



A picture fuzzy graph 𝐺 = (𝑉, 𝜎, µ)  is said to be a picture fuzzy labelling graph if 

𝜎1: 𝑉 → [0, 1], 𝜎2: 𝑉 → [0, 1], 𝜎3: 𝑉 → [0, 1] and µ1: 𝑉 x 𝑉 → [0, 1], µ2: 𝑉 x 𝑉 → [0, 1], 

µ3: 𝑉 x 𝑉 → [0, 1] are one to one such that the positive, neutral and negative membership 

functions of the edges and vertices where 𝜎 = (𝜎1, 𝜎2, 𝜎3) and µ = (µ1, µ2, µ3) are distinct 

such that  

𝜇1(𝑎𝑖, 𝑎𝑖+1) < 𝜎1(𝑎𝑖) ˄ 𝜎1(𝑎𝑖+1) 

𝜇2(𝑎𝑖, 𝑎𝑖+1) < 𝜎2(𝑎𝑖) ˄ 𝜎2(𝑎𝑖+1) 

𝜇3(𝑎𝑖, 𝑎𝑖+1) < 𝜎3(𝑎𝑖) ˅ 𝜎3(𝑎𝑖+1) 

0 ≤  𝜇1(𝑎𝑖, 𝑎𝑖+1) + 𝜇2(𝑎𝑖, 𝑎𝑖+1) + 𝜇3(𝑎𝑖, 𝑎𝑖+1) ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒𝑑𝑔𝑒𝑠 (𝑎𝑖, 𝑎𝑖+1) ∈ 𝑉 x 𝑉. 

 

Note:  

In the following theorems and results,  

 Picture fuzzy labelling graph, picture fuzzy labelling and picture fuzzy will be denoted as 

PFLG, PFL and PF respectively. 

 Positive, Neutral and Negative membership function will be denoted respectively as PM, 

NM and NEM. 

 

Example 3.2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Picture Fuzzy Labelling Graph 

 

Definition 3.3:  

Let 𝐺 = (𝑉, 𝜎, 𝜇) be a PFLG. 𝐻 = (𝑉, 𝛼, 𝛽) with 𝛼1: 𝑉 → [0, 1], 𝛼2: 𝑉 → [0, 1], 

𝛼3: 𝑉 → [0, 1] and 𝛽1: 𝑉 x 𝑉 → [0, 1], 𝛽2: 𝑉 x 𝑉 → [0, 1], 𝛽3: 𝑉 x 𝑉 → [0, 1] as PM, NM, 

NEM of vertices and edges respectively where 𝛼 = (𝛼1, 𝛼2, 𝛼3) and 𝛽 = (𝛽1, 𝛽2, 𝛽3) is said 

to be a picture fuzzy labelling subgraph of 𝐺. 

If 𝛼1(𝑎) ≤ 𝜎1(𝑎),   𝛼2(𝑎) ≤ 𝜎2(𝑎) & 𝛼3(𝑎) ≥ 𝜎3(𝑎) ∀ 𝑎 ∈ 𝑉 and 

𝛽1(𝑎, 𝑏) ≤ 𝜇1(𝑎, 𝑏),   𝛽2(𝑎, 𝑏) ≤ 𝜇2(𝑎, 𝑏) & 𝛽3(𝑎, 𝑏) ≥ 𝜇3(𝑎, 𝑏) ∀ (𝑎, 𝑏) ∈ 𝑉 x 𝑉 

 

Theorem 3.4: 
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            If 𝐻 = (𝑉, 𝛼, 𝛽) with 𝛼 = (𝛼1, 𝛼2, 𝛼3) and 𝛽 = (𝛽1, 𝛽2, 𝛽3) is a PFL subgraph of 

𝐺 = (𝑉, 𝜎, 𝜇) where 𝜎 = (𝜎1, 𝜎2, 𝜎3) and µ = (µ1, µ2, µ3) then 

                                                 𝛽1
∞(𝑎, 𝑏) ≤ 𝜇1

∞(𝑎, 𝑏),  

                                                 𝛽2
∞(𝑎, 𝑏) ≤ 𝜇2

∞(𝑎, 𝑏),  

                                                 𝛽3
∞(𝑎, 𝑏) ≥ 𝜇3

∞(𝑎, 𝑏). ∀ 𝑎, 𝑏 ∈ 𝑉 

where 𝛽1
∞, 𝛽2

∞, 𝛽3
∞ and 𝜇1

∞, 𝜇2
∞, 𝜇3

∞ are the strength of the picture fuzzy labelling graph G 

and picture fuzzy labelling subgraph H of G. 

Proof: 

          Let 𝐺 = (𝑉, 𝜎, 𝜇) be any PFLG and 𝐻 = (𝑉, 𝛼, 𝛽) be its PFL subgraph. 

Let (𝑎, 𝑏) be any PF path in G and its strength be µ1
∞(𝑎, 𝑏),  µ2

∞(𝑎, 𝑏), µ3
∞(𝑎, 𝑏). 

Since H is a PFL subgraph of G, 

𝛼1(𝑎) ≤ 𝜎1(𝑎), 𝛽1(𝑎, 𝑏) ≤ 𝜇1(𝑎, 𝑏), 

𝛼2(𝑎) ≤ 𝜎2(𝑎), 𝛽2(𝑎, 𝑏) ≤ 𝜇2(𝑎, 𝑏), 

𝛼3(𝑎) ≥ 𝜎3(𝑎), 𝛽3(𝑎, 𝑏) ≥ 𝜇3(𝑎, 𝑏). 

∀ 𝑎, 𝑏 ∈ 𝑉 𝑎𝑛𝑑 (𝑎, 𝑏) ∈ 𝐸 ⊆ 𝑉 x 𝑉 

which implies that, 

                                              𝛽1
∞(𝑎, 𝑏) ≤ 𝜇1

∞(𝑎, 𝑏),  

                                              𝛽2
∞(𝑎, 𝑏) ≤ 𝜇2

∞(𝑎, 𝑏),  

                                              𝛽3
∞(𝑎, 𝑏) ≥ 𝜇3

∞(𝑎, 𝑏). ∀ 𝑎, 𝑏 ∈ 𝑉 

 

Theorem 3.5: 

           The union of two PFLG is also a PFLG. 

Proof: 

            Let 𝐺′=(𝑉 ′, 𝜎′, 𝜇′) and 𝐺′′=(𝑉 ′′, 𝜎′′, 𝜇′′) be any two PFLGs such that the PM, NM 

and NEM values of the edges of  𝐺′ & 𝐺′′ are distinct. Let 𝐺 = (𝑉, 𝜎, 𝜇) with  𝜎 =

(𝜎1, 𝜎2, 𝜎3) and µ = (µ1, µ2, µ3) be the union of 𝐺′ & 𝐺′′.  

Now, we prove that G is a PFLG. 

𝜎1(𝑎) =  {

𝜎1
′(𝑎)                          𝑖𝑓  𝑎 ∈ 𝑉′ −  𝑉′′

𝜎1
′′(𝑎)                         𝑖𝑓  𝑎 ∈ 𝑉′′ − 𝑉′

𝜎1
′(𝑎) ˅ 𝜎1

′′(𝑎)        𝑖𝑓  𝑎 ∈ 𝑉′ ∩ 𝑉′′

 

𝜎2(𝑎) =  {

𝜎2
′(𝑎)                          𝑖𝑓  𝑎 ∈ 𝑉′ −  𝑉′′

𝜎2
′′(𝑎)                        𝑖𝑓  𝑎 ∈ 𝑉′′ −  𝑉′

𝜎2
′(𝑎) ˅ 𝜎2

′′(𝑎)       𝑖𝑓  𝑎 ∈ 𝑉′ ∩ 𝑉′′

 

𝜎3(𝑎) =  {

𝜎3
′(𝑎)                         𝑖𝑓  𝑎 ∈ 𝑉′ −  𝑉′′

𝜎3
′′(𝑎)                        𝑖𝑓  𝑎 ∈ 𝑉′′ −  𝑉′

𝜎3
′(𝑎) ˄ 𝜎3

′′(𝑎)       𝑖𝑓  𝑎 ∈ 𝑉′ ∩ 𝑉′′

 

And 

𝜇1(𝑎, 𝑏) =  {

𝜇1
′ (𝑎, 𝑏)                             𝑖𝑓  (𝑎, 𝑏) ∈ 𝐸′ −  𝐸′′

𝜇1
′′(𝑎, 𝑏)                            𝑖𝑓  (𝑎, 𝑏) ∈ 𝐸′′ −  𝐸′

𝜇1
′ (𝑎, 𝑏) ˅𝜇1

′′(𝑎, 𝑏)       𝑖𝑓  (𝑎, 𝑏) ∈ 𝐸′ ∩ 𝐸′′

 



v2(0.4, 0.3, 0.2)

v3(0.2, 0.4, 0.2)v4(0.3, 0.2, 0.4)

v1(0.2, 0.4, 0.3)

(0.1, 0.1, 0.2) (0.1, 0.3, 0.1)

(0.1, 0.2, 0.1)

(0.1, 0.1, 0.1)

𝜇2(𝑎, 𝑏) =  {

𝜇2
′ (𝑎, 𝑏)                           𝑖𝑓  (𝑎, 𝑏) ∈ 𝐸′ −  𝐸′′

𝜇2
′′(𝑎, 𝑏)                          𝑖𝑓  (𝑎, 𝑏) ∈ 𝐸′′ −  𝐸′

𝜇2
′ (𝑎, 𝑏) ˅𝜇2

′′(𝑎, 𝑏)     𝑖𝑓  (𝑎, 𝑏) ∈ 𝐸′ ∩ 𝐸′′

 

𝜇3(𝑎, 𝑏) =  {

𝜇3
′ (𝑎, 𝑏)                          𝑖𝑓  (𝑎, 𝑏) ∈ 𝐸′ −  𝐸′′

𝜇3
′′(𝑎, 𝑏)                          𝑖𝑓  (𝑎, 𝑏) ∈ 𝐸′′ −  𝐸′

𝜇3
′ (𝑎, 𝑏) ˄𝜇3

′′(𝑎, 𝑏)    𝑖𝑓  (𝑎, 𝑏) ∈ 𝐸′ ∩ 𝐸′′

 

         The PM, NM and NEM of the edges and vertices are distinct. And the defined 𝐺 =

(𝑉, 𝜎, 𝜇) satisfies the condition of PFL. Hence union of two PFLG is also a PFLG. 

 

Definition 3.6: 

          Let 𝐺 = (𝑉, 𝜎, 𝜇) be a PFLG. The strength of the picture fuzzy path P of n edges 𝑒𝑖 for 

𝑖 = 1, … 𝑛 is denoted by 𝑃𝑆(𝑃) = (𝑃𝑆1(𝑃), 𝑃𝑆2(𝑃),  𝑃𝑆3(𝑃)) and is defined by 

𝑃𝑆1(𝑃) = min
1≤𝑖≤𝑛

𝜇1(𝑒𝑖),  

𝑃𝑆2(𝑃) = min
1≤𝑖≤𝑛

𝜇2(𝑒𝑖),  

𝑃𝑆3(𝑃) = max
1≤𝑖≤𝑛

𝜇3(𝑒𝑖).  

 

Definition 3.7: 

           Let 𝐺 = (𝑉, 𝜎, 𝜇)  be a PFLG. The picture fuzzy strength of connectedness of a duo of 

vertices 𝑎, 𝑏 ∈ 𝑉, denoted by 𝑃𝐶𝑂𝑁𝑁𝐺(𝑎, 𝑏) = (𝑃𝐶𝑂𝑁𝑁1𝐺(𝑎, 𝑏), 𝑃𝐶𝑂𝑁𝑁2𝐺(𝑎, 𝑏),

𝑃𝐶𝑂𝑁𝑁3𝐺(𝑎, 𝑏)) is defined by 

𝑃𝐶𝑂𝑁𝑁1𝐺(𝑎, 𝑏) = 𝑚𝑎𝑥 {𝑃𝑆1(𝑃)/𝑃 𝑖𝑠 𝑎 𝑎 − 𝑏 𝑃𝐹 𝑝𝑎𝑡ℎ 𝑖𝑛 𝐺} and 𝑃𝐶𝑂𝑁𝑁2𝐺(𝑎, 𝑏) =

𝑚𝑎𝑥 {𝑃𝑆2(𝑃)/𝑃 𝑖𝑠 𝑎  𝑎 − 𝑏 𝑃𝐹 𝑝𝑎𝑡ℎ 𝑖𝑛 𝐺} and 𝑃𝐶𝑂𝑁𝑁3𝐺(𝑎, 𝑏) = 𝑚𝑖𝑛 {𝑃𝑆3(𝑃)/

𝑃 𝑖𝑠 𝑎  𝑎 − 𝑏 𝑃𝐹 𝑝𝑎𝑡ℎ 𝑖𝑛 𝐺}. 𝑃𝐶𝑂𝑁𝑁𝐺(𝑎, 𝑏) = (0, 0, 0) if the vertices are is defined in G. 

 

Example 3.8: 

          Consider the following PFLG, 𝐺 = (𝑉, 𝜎, 𝜇).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Picture Fuzzy Strength of Connectedness 

 

𝑃𝐶𝑂𝑁𝑁𝐺(𝑣1, 𝑣2) = (0.1, 0.2, 0.1) 

𝑃𝐶𝑂𝑁𝑁𝐺(𝑣1, 𝑣3) = (𝑚𝑎𝑥 (0.1, 0.1), 𝑚𝑎𝑥 (0.2, 0.1), min(0.1, 0.2)) 



= (0.1, 0.2, 0.1) 

𝑃𝐶𝑂𝑁𝑁𝐺(𝑣1, 𝑣4) = (𝑚𝑎𝑥 (0.1, 0.1), 𝑚𝑎𝑥 (0.1, 0.1), min(0.1, 0.2)) 

= (0.1, 0.1, 0.1) 

 

Proposition 3.9: 

            Let 𝐺 be a PFLG and 𝐻 a PFL subgraph of 𝐺. Then for every pair of vertices 𝑎, 𝑏 ∈

𝑉,  we have 

𝑃𝐶𝑂𝑁𝑁1𝐻(𝑎, 𝑏) ≤ 𝑃𝐶𝑂𝑁𝑁1𝐺(𝑎, 𝑏), 

𝑃𝐶𝑂𝑁𝑁2𝐻(𝑎, 𝑏) ≤ 𝑃𝐶𝑂𝑁𝑁2𝐺(𝑎, 𝑏), 

𝑃𝐶𝑂𝑁𝑁3𝐻(𝑎, 𝑏) ≥ 𝑃𝐶𝑂𝑁𝑁3𝐺(𝑎, 𝑏). 

 

Definition 3.10: 

            A 𝑎 − 𝑏 picture fuzzy path in a PFLG is called the strongest 𝑎 − 𝑏 PF path if 

𝑃𝑆1(𝑃) = 𝑃𝐶𝑂𝑁𝑁1𝐺(𝑎, 𝑏), 

𝑃𝑆2(𝑃) = 𝑃𝐶𝑂𝑁𝑁2𝐺(𝑎, 𝑏), 

𝑃𝑆3(𝑃) = 𝑃𝐶𝑂𝑁𝑁3𝐺(𝑎, 𝑏). 

 

Definition 3.11: 

            Let 𝐺 be a PFLG. A node 𝑤 is called a picture fuzzy partial cut node (𝑝 − 𝑐𝑢𝑡 𝑛𝑜𝑑𝑒) 

of 𝐺 if there exists a pair of nodes 𝑎, 𝑏 ∈ 𝑉 such that 𝑎 ≠ 𝑏 ≠ 𝑐 and  

𝑃𝐶𝑂𝑁𝑁1(𝐺−𝑐)(𝑎, 𝑏) < 𝑃𝐶𝑂𝑁𝑁1𝐺(𝑎, 𝑏), 

𝑃𝐶𝑂𝑁𝑁2(𝐺−𝑐)(𝑎, 𝑏) < 𝑃𝐶𝑂𝑁𝑁2𝐺(𝑎, 𝑏), 

𝑃𝐶𝑂𝑁𝑁3(𝐺−𝑐)(𝑎, 𝑏) > 𝑃𝐶𝑂𝑁𝑁3𝐺(𝑎, 𝑏). 

A connected PFLG having no (𝑝 − 𝑐𝑢𝑡 𝑛𝑜𝑑𝑒) is called a picture fuzzy partial block. 

 

Example 3.12: 

v2(0.5, 0.3, 0.2)

v3(0.3, 0.3, 0.4)v4(0.5, 0.3, 0.1)

v1(0.3, 0.4, 0.3)

(0.1, 0.2, 0.2) (0.2, 0.2, 0.1)

(0.2, 0.2, 0.2)

(0.2, 0.1, 0.3)

 
 

Figure 3 PFLG with picture fuzzy partial cut node v2 

𝑃𝐶𝑂𝑁𝑁𝐺(𝑣1, 𝑣3) = (𝑚𝑎𝑥(0.2,0.1), 𝑚𝑎𝑥(0.2,0.1), 𝑚𝑖𝑛(0.2,0.3)) 

= (0.2, 0.2, 0.2) 

𝑃𝐶𝑂𝑁𝑁𝐺−𝑣2
(𝑣1, 𝑣3) = (0.1, 0.1,0.3) 



v2(0.08, 0.09, 0.4)

v3(0.1, 0.1, 0.2)v4(0.05, 0.06, 0.7)

v1(0.07, 0.08, 0.5)

(0.04, 0.05, 0.4) (0.02, 0.03, 0.2)

(0.06, 0.07, 0.3)

(0.01, 0.02, 0.5)

 

Definition 3.13: 

             Let 𝐺 be a PFLG. An arc 𝑒 = (𝑎, 𝑏) is called a picture fuzzy partial bridge (𝑝 −

𝑏𝑟𝑖𝑑𝑔𝑒) if  

𝑃𝐶𝑂𝑁𝑁1(𝐺−𝑒)(𝑎, 𝑏) < 𝑃𝐶𝑂𝑁𝑁1𝐺(𝑎, 𝑏), 

𝑃𝐶𝑂𝑁𝑁2(𝐺−𝑒)(𝑎, 𝑏) < 𝑃𝐶𝑂𝑁𝑁2𝐺(𝑎, 𝑏), 

𝑃𝐶𝑂𝑁𝑁3(𝐺−𝑒)(𝑎, 𝑏) > 𝑃𝐶𝑂𝑁𝑁3𝐺(𝑎, 𝑏). 

A (𝑝 − 𝑏𝑟𝑖𝑑𝑔𝑒) is said to be a picture fuzzy partial bond (𝑝 − 𝑏𝑜𝑛𝑑) if 

𝑃𝐶𝑂𝑁𝑁1(𝐺−𝑒)(𝑥, 𝑦) < 𝑃𝐶𝑂𝑁𝑁1𝐺(𝑥, 𝑦), 

𝑃𝐶𝑂𝑁𝑁2(𝐺−𝑒)(𝑥, 𝑦) < 𝑃𝐶𝑂𝑁𝑁2𝐺(𝑥, 𝑦), 

𝑃𝐶𝑂𝑁𝑁3(𝐺−𝑒)(𝑥, 𝑦) > 𝑃𝐶𝑂𝑁𝑁3𝐺(𝑥, 𝑦). 

with at least one of 𝑥 𝑜𝑟 𝑦 different from 𝑎 𝑎𝑛𝑑 𝑏 and is said to be a picture fuzzy partial cut 

bond if both 𝑥 𝑎𝑛𝑑 𝑦 are different from 𝑎 𝑎𝑛𝑑 𝑏. 

 

Example 3.14: 

              Here is an example for picture fuzzy partial bridge of PFLG. In this PFLG all the 

edges except (𝑣3, 𝑣4) are picture fuzzy partial bridge. Edge (𝑣1, 𝑣2) is picture fuzzy partial 

cut bond, since 𝑃𝐶𝑂𝑁𝑁𝐺−𝑣1𝑣2
(𝑣3, 𝑣4) = (0.01, 0.02, 0.5) 𝑎𝑛𝑑 𝑃𝐶𝑂𝑁𝑁𝐺(𝑣3, 𝑣4) =

(0.02, 0.03, 0.4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 PFLG with picture fuzzy partial bridge  

 

Definition 3.15: 

Let 𝐺 be a PFLG and 𝐶, a picture fuzzy cycle in G. Then, 

(i) 𝐶 is called a strong picture fuzzy cycle if all picture fuzzy arcs in 𝐶 are strong. 

(ii) A picture fuzzy arc 𝑒 = (𝑥, 𝑦) ∈ 𝐸 is called PF 𝛼 − 𝑠𝑡𝑟𝑜𝑛𝑔 if 𝑃𝐶𝑂𝑁𝑁1(𝐺−𝑒)(𝑥, 𝑦) <

𝜇1(𝑎, 𝑏), 

𝑃𝐶𝑂𝑁𝑁2(𝐺−𝑒)(𝑥, 𝑦) < 𝜇2(𝑎, 𝑏), 𝑃𝐶𝑂𝑁𝑁3(𝐺−𝑒)(𝑥, 𝑦) > 𝜇3(𝑎, 𝑏); a PF 𝛿 − 𝑎𝑟𝑐 if  

𝑃𝐶𝑂𝑁𝑁1(𝐺−𝑒)(𝑥, 𝑦) > 𝜇1(𝑎, 𝑏), 𝑃𝐶𝑂𝑁𝑁2(𝐺−𝑒)(𝑥, 𝑦) > 𝜇2(𝑎, 𝑏), 𝑃𝐶𝑂𝑁𝑁3(𝐺−𝑒)(𝑥, 𝑦) <

𝜇3(𝑎, 𝑏). 



(iii) A 𝑎 − 𝑏 picture fuzzy path 𝑃 in 𝐺 is named a strong 𝑎 − 𝑏 picture fuzzy path if all the 

edges of 𝑃 are strong. 

In particular, if all the PF arcs of 𝑃 are PF 𝛼 − 𝑠𝑡𝑟𝑜𝑛𝑔, then 𝑃 is called 𝛼 − 𝑠𝑡𝑟𝑜𝑛𝑔 picture 

fuzzy path. 
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Figure 5 v4v1v2 is an α − strong picture fuzzy path in PFLG 

 

Definition 3.16: 

              A PFLG is named a 𝜃-picture fuzzy labelling graph if for each pair of nodes 

𝑎 𝑎𝑛𝑑 𝑏, either all strong picture fuzzy cycles passing through 𝑎 𝑎𝑛𝑑 𝑏 have the same 

strength or there is no strong picture fuzzy cycle passing through 𝑎 𝑎𝑛𝑑 𝑏. 

 

Example 3.17: 

              Consider the following PFLG, clearly G is a 𝜃-PFLG as G has no strong picture 

fuzzy cycles. 
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v3(0.4, 0.1, 0.3)v4(0.5, 0.3, 0.2)
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Figure 6 θ-PFLG  

 

 

Theorem 3.18: 

            Let 𝐺 be a connected PFLG and let 𝑎, 𝑏 be 2 nodes in 𝐺. Then ∃ a strong picture 

fuzzy path from 𝑎 𝑡𝑜 𝑏. 



Proof: 

Suppose that 𝐺 = (𝑉, 𝜎, 𝜇) is a connected PFLG. Let 𝑎 and 𝑏 be any two nodes of 𝐺. 

If the picture fuzzy arc (𝑎, 𝑏) is strong, then there is nothing to prove. Otherwise, either (𝑎, 𝑏) 

is a PF 𝛿 − 𝑎𝑟𝑐 or there will be a picture fuzzy path having length more than one from 

𝑎 𝑡𝑜 𝑏. 

In the first case, we can find a picture fuzzy path 𝑃 such that, 

𝑃𝑆1(𝑃) > 𝜇1(𝑎, 𝑏), 

𝑃𝑆2(𝑃) > 𝜇2(𝑎, 𝑏), 

𝑃𝑆3(𝑃) < 𝜇3(𝑎, 𝑏). 

             In either case, the picture fuzzy path from 𝑎 𝑡𝑜 𝑏 is of length more than one. If some 

picture fuzzy arc on this picture fuzzy path is not strong, replace it by a picture fuzzy path 

having more strength. Hence there will be a picture fuzzy path from 𝑎 𝑡𝑜 𝑏 on which all the 

picture fuzzy arcs are strong. Hence, ∃ a strong picture fuzzy path from 𝑎 𝑡𝑜 𝑏. 

 

Proposition 3.19: 

Let 𝐺 be a PFL cycle, then 𝐺 has exactly one weakest PF arc. 

Proof: 

Let 𝐺 = (𝑉, 𝜎, 𝜇) be a PFL cycle. Let  

𝜇1(𝑎, 𝑏) = ⋀ 𝜇1(𝑎𝑖, 𝑏𝑖)

𝑛

𝑖=1

 

𝜇2(𝑎, 𝑏) = ⋀ 𝜇2(𝑎𝑖, 𝑏𝑖)

𝑛

𝑖=1

 

𝜇3(𝑎, 𝑏) = ⋁ 𝜇3(𝑎𝑖, 𝑏𝑖)

𝑛

𝑖=1

 

Since 𝐺 has PFL, it will have only one PF arc with 𝜇(𝑎, 𝑏) = (𝜇1(𝑎, 𝑏), 𝜇2(𝑎, 𝑏), 𝜇3(𝑎, 𝑏)). If 

we remove 𝜇(𝑎, 𝑏) from 𝐺, the picture fuzzy strength of connectedness will not be reduced 

implying that 𝜇(𝑎, 𝑏) is the weakest PF arc. Hence there exists only one weakest picture 

fuzzy arc in any PFL cycle. 

 

Proposition 3.20: 

If 𝐺 is a PFL cycle, then it has (𝑛 − 1) picture fuzzy bridges. 

Proof: 

Let 𝐺 = (𝑉, 𝜎, 𝜇) be a PFLG. By previous proposition, G has only one weakest 

picture fuzzy arc. We know that weakest picture fuzzy edge is not a picture fuzzy bridge. 

This implies that the picture fuzzy strength of the connectedness will be reduced whenever 

any edge except weakest one is removed. Hence every PFLG has (𝑛 − 1) picture fuzzy 

bridges. 

 

 

Proposition 3.21: 



If 𝐺 is a PFLG, then every picture fuzzy bridge is strong and vice versa. 

Proof:  

Let 𝐺 = (𝑉, 𝜎, 𝜇) be a PFLG with 𝑛 nodes. 𝐺 has exactly one weakest picture fuzzy 

arc and has 𝑛 − 1 picture fuzzy bridges. 

Our claim is to prove that 𝑛 − 1 picture fuzzy bridges are strong. Let us choose a picture 

fuzzy arc 𝑎𝑖, 𝑎𝑖+1 from 𝑛 − 1 edges. Since 𝐺 is a picture fuzzy labelling cycle, there are two 

picture fuzzy paths between the nodes 𝑎𝑖 and 𝑎𝑖+1. 

i.e. one picture fuzzy path with 𝜇(𝑎𝑖, 𝑎𝑖+1) > 0 and the other with 

𝜇(𝑎𝑖, 𝑎𝑖+1) = (𝜇1(𝑎𝑖, 𝑎𝑖+1), 𝜇2(𝑎𝑖, 𝑎𝑖+1), 𝜇3(𝑎𝑖, 𝑎𝑖+1))  

𝜇(𝑎𝑖, … 𝑎𝑖+𝑛, … 𝑎𝑖+1)

= (𝜇1(𝑎𝑖, … 𝑎𝑖+𝑛, … 𝑎𝑖+1), 𝜇2(𝑎𝑖, … 𝑎𝑖+𝑛, … 𝑎𝑖+1), 𝜇3(𝑎𝑖, … 𝑎𝑖+𝑛, … 𝑎𝑖+1))

> 0  

𝜇∞(𝑎𝑖, 𝑎𝑖+1) = 𝜇(𝑎𝑖, 𝑎𝑖+1) = (𝜇1(𝑎𝑖, 𝑎𝑖+1), 𝜇2(𝑎𝑖, 𝑎𝑖+1), 𝜇3(𝑎𝑖, 𝑎𝑖+1))  

which implies that (𝑎𝑖, 𝑎𝑖+1) is a strong picture fuzzy arc. Repeating this argument for all 

(𝑛 − 1) edges, we obtain that every picture fuzzy bridge is strong. The converse of the 

theorem is obvious. 

 

Proposition 3.22: 

Let 𝐺 be a PFLG. Then 𝐺 has at least one picture fuzzy bridge. 

Proof: 

Let 𝐺 = (𝑉, 𝜎, 𝜇) be a PFLG. Choose an edge (𝑎, 𝑏) such that 

𝜇′(𝑎, 𝑏) = (𝜇1(𝑎, 𝑏), 𝜇2(𝑎, 𝑏), 𝜇3(𝑎, 𝑏)) is the maximum in the set of all values of  

𝜇′(𝑎𝑖, 𝑏𝑖) = (𝜇1(𝑎𝑖, 𝑏𝑖), 𝜇2(𝑎𝑖, 𝑏𝑖), 𝜇3(𝑎𝑖, 𝑏𝑖)) > 0 and there exists some edge (𝑢, 𝑣) such that 

𝜇′(𝑢, 𝑣) < 𝜇′(𝑎, 𝑏). 

Now we claim 𝜇′(𝑎, 𝑏) is a picture fuzzy bridge. From G if the edge (𝑎, 𝑏) is removed, then 

𝐻 is a picture fuzzy subgraph, thus we have  

𝜇𝐻(𝑎, 𝑏) < 𝜇′(𝑎, 𝑏). 

Therefore (𝑎, 𝑏) is a picture fuzzy bridge. 

 

Proposition 3.23: 

If G is a connected PFLG then there exists a strong picture fuzzy path between any 

pair of nodes. 

Proof: 

Let 𝐺 = (𝑉, 𝜎, 𝜇) be a connected PFLG and let (𝑎, 𝑏) be any pair of nodes. This 

implies (𝑎, 𝑏) = (𝜇1(𝑎, 𝑏), 𝜇2(𝑎, 𝑏), 𝜇3(𝑎, 𝑏)) > 0. Now choose any edge (𝑎, 𝑐) in (𝑎, 𝑏). If 

𝜇(𝑎, 𝑐) = 𝜇′(𝑎, 𝑐), then it is picture fuzzy strong. Otherwise choose any other edge, say 

(𝑎, 𝑑), which satisfies 𝜇(𝑎, 𝑑) = 𝜇′(𝑎, 𝑑). By repeating this process, we can find a picture 

fuzzy path in (𝑎, 𝑏) in which all picture fuzzy arcs are strong. 

 

Proposition 3.24: 

Every PFLG has at least one weakest picture fuzzy arc. 

Proof: 



Let G be a PFLG and let (𝑎, 𝑏) be an edge of G such that the positive, neutral and 

negative memberships of this edge is maximum, maximum and minimum than all other edges 

of the picture fuzzy graph. If this edge is removed from G, it does reduce the picture fuzzy 

strength of any picture fuzzy path. That is, after its removal, PM, NM and NEM of (𝑎, 𝑏) in 

G is less, less and greater than the PM, NM and NEM of (𝑎, 𝑏) in the picture fuzzy labelling 

subgraph. This implies that the edge is neither a picture fuzzy bridge nor a strong picture 

fuzzy arc. Therefore, this must be the weakest picture fuzzy arc.  

Now we define a Picture fuzzy labelling tree along with some of its properties. 

 

Definition 3.25: 

A PFL graph 𝐺 = (𝑉, 𝜎, 𝜇) is named a PFL tree, if it has PFL and a PF spanning 

subgraph 𝐹 = (𝑉, 𝜗, 𝜌) which is a picture fuzzy tree, where for all PF arcs (𝑎, 𝑏) not in F, 

𝜇1(𝑎, 𝑏) < 𝜌1
∞(𝑎, 𝑏), 𝜇2(𝑎, 𝑏) < 𝜌2

∞(𝑎, 𝑏), 𝜇3(𝑎, 𝑏) > 𝜌3
∞(𝑎, 𝑏). 

 

Theorem 3.26: 

If G is a PFL tree, then the arcs of PF spanning subgraph F are PF bridges of G. 

Proof: 

Let 𝐺 = (𝑉, 𝜎, 𝜇) be a PFL tree and 𝐹 = (𝑉, 𝜗, 𝜌) be its PF spanning subgraph. Let 

(𝑎, 𝑏) bean arc in F. Then 𝜌1
∞(𝑎, 𝑏) < 𝜇1(𝑎, 𝑏) ≤ 𝜇1

∞(𝑎, 𝑏), 𝜌2
∞(𝑎, 𝑏) < 𝜇2(𝑎, 𝑏) ≤ 𝜇2

∞(𝑎, 𝑏) 

and 𝜌3
∞(𝑎, 𝑏) > 𝜇3(𝑎, 𝑏) ≥ 𝜇3

∞(𝑎, 𝑏), which implies that the picture fuzzy arc (𝑎, 𝑏) is a PF 

bridge of G. Since the picture fuzzy arc (𝑎, 𝑏) is arbitrary, the picture fuzzy arcs of F are PF 

bridges of G. 

 

Definition 3.27: 

A connected PFLG 𝐺 = (𝑉, 𝜎, 𝜇) is called a picture partial tree if G has a picture 

fuzzy spanning subgraph 𝐹 = (𝑉, 𝜗, 𝜌) which is a picture fuzzy tree, where for all picture 

fuzzy arcs (𝑎, 𝑏) of G not in F, we have 𝑃𝐶𝑂𝑁𝑁1𝐺(𝑎, 𝑏) > 𝜇1(𝑎, 𝑏), 𝑃𝐶𝑂𝑁𝑁2𝐺(𝑎, 𝑏) >

𝜇2(𝑎, 𝑏), 𝑃𝐶𝑂𝑁𝑁3𝐺(𝑎, 𝑏) < 𝜇3(𝑎, 𝑏). 

If the above criterion is satisfied for all the components of G when it is not connected, 

then the PFLG is called a picture fuzzy partial forest.  

 

Example 3.28: 

Here is an example for a picture fuzzy partial tree. The graph G is the picture fuzzy partial 

tree since it has a picture fuzzy spanning tree F when the edge (𝑣1, 𝑣2) is removed. In the 

example below, 𝑃𝐶𝑂𝑁𝑁𝐺(𝑣1, 𝑣2) = (0.2,0.2,0.2) and 𝜇(𝑣1, 𝑣2) = (0.1,0.1,0.3), thus G is a 

picture fuzzy partial tree. 
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Figure 7 Picture fuzzy partial tree 

 

Theorem 3.29: 

If there is at most one stronger picture fuzzy path among any two vertices of PFLG, 

then the PFLG should be a picture fuzzy partial forest. 

Proof: 

Let us assume that the PFLG is not a picture fuzzy partial forest. Then there will be a 

picture fuzzy cycle C in G with the criteria that 

𝑃𝐶𝑂𝑁𝑁1𝐺(𝑎, 𝑏) ≤ 𝜇1(𝑎, 𝑏), 𝑃𝐶𝑂𝑁𝑁2𝐺(𝑎, 𝑏) ≤ 𝜇2(𝑎, 𝑏), 𝑃𝐶𝑂𝑁𝑁3𝐺(𝑎, 𝑏) ≥ 𝜇3(𝑎, 𝑏) for all 

edges (𝑎, 𝑏) of C. Thus, this edge is the strongest picture fuzzy path from 𝑎 𝑡𝑜 𝑏. But if we 

pick this edge to be the frailest edge of C, then the other edges of C will also be the strongest 

picture fuzzy path from a 𝑡𝑜 𝑏, which is a contradiction. 

 

Theorem 3.30: 

If G is a picture fuzzy partial tree but not a picture fuzzy tree, then there exists at least 

one edge for which the membership of edge is less than the strength of connectedness of that 

edge. 

Proof: 

Let 𝐺 = (𝑉, 𝜎, 𝜇) be a picture fuzzy partial tree. Then by the definition of picture 

fuzzy partial tree there is a picture fuzzy spanning tree F of G with the condition 𝜇1(𝑎, 𝑏) <

𝑃𝐶𝑂𝑁𝑁1𝐺(𝑎, 𝑏), 𝜇2(𝑎, 𝑏) < 𝑃𝐶𝑂𝑁𝑁2𝐺(𝑎, 𝑏),   𝜇3(𝑎, 𝑏) > 𝑃𝐶𝑂𝑁𝑁3𝐺(𝑎, 𝑏) for edges (𝑎, 𝑏) 

in G not in F. Since G is not a picture fuzzy tree, there is at least one such picture fuzzy arc 

and thus the theorem is proved. 

 

Theorem 3.31: 

Let G be a picture fuzzy partial tree and F the spanning picture fuzzy tree. Then the 

arcs of F are the picture fuzzy partial bridges of G. 

Proof: 

Let 𝐺 = (𝑉, 𝜎, 𝜇) be a picture fuzzy partial tree and (𝑎, 𝑏) an arc in F. Since F is a 

picture fuzzy spanning tree of G, this arc is a unique picture fuzzy path from 𝑎 𝑡𝑜 𝑏 in F. The 

result is trivial if there is no other picture fuzzy path in G from 𝑎 𝑡𝑜 𝑏. If there is a picture 

fuzzy path from 𝑎 𝑡𝑜 𝑏 in G, then the picture fuzzy path will definitely have a picture fuzzy 

arc (𝑎, 𝑏) such that 

𝑃𝐶𝑂𝑁𝑁1𝐺(𝑎, 𝑏) > 𝜇1(𝑎, 𝑏), 𝑃𝐶𝑂𝑁𝑁2𝐺(𝑎, 𝑏) > 𝜇2(𝑎, 𝑏), 𝑃𝐶𝑂𝑁𝑁3𝐺(𝑎, 𝑏) < 𝜇3(𝑎, 𝑏). Then 



it is shown that (𝑎, 𝑏) is not a frailest edge of any picture fuzzy cycle in G. Thus (𝑎, 𝑏) is a 

picture fuzzy partial bridge. 

 

APPLICATION: 

Everything in our human body is very important, to make us live a happily life. One 

of the important systems is Circulatory system in our body. There are two types of circulatory 

system, open & closed circulatory system. We all possess close circulatory system where 

blood flows through a closed nexus of blood vessels. This system contains Heart, Arteries, 

Veins and blood as their parts. The blood circulation system was discovered by William 

Harvey. The major function of human heart is pumping of blood which in one cycle pumps 

70 ml of blood with normal heartbeat as 72 beats per minute. Next it has right & left atrium 

and right & left ventricle in the anterior and posterior part. Veins are the vessels which carries 

blood towards heart, which has impure blood (blood with carbon di oxide). The blood form 

lungs to left atrium is carried b Pulmonary vein. Artery is the vessel which carries blood from 

heart to body. Artery contains pure blood (blood with oxygen) except Pulmonary arteries 

which has impure blood. This Pulmonary artery transfers blood from right ventricle to lungs. 

The right part of heart carries impure blood and left part has pure blood.  

 

Now we are going to represent this circulation system using a fuzzy graph model. 

Mammals all have double circulation in which blood crosses two times from heart. This is 

how the system works: Right atrium receives impure blood from body to right ventricle and 

into pulmonary artery and this sends blood to lungs for purification. After purification, 

pulmonary vein send blood to left atrium and then into left ventricle. Then the blood which is 

purified is circulated in the body for different organs. In the model given below, we have 

represented the circulation system of human body. When examining a human circulation 

system, through proper fuzzy labelling we can easily make the diagnosis easy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Figure 8 Circulatory system model                      Figure 9 Picture fuzzy labelling of circulatory system 

 

In figure 9, we have just given an example or the picture fuzzy labelling. The first 

figure demonstrates the circulation system through a model, followed by the explanation of 



how to label the model using picture fuzzy labelling. The values represent the blood flow 

through the veins. This model can be used for diagnosing the circulating system, since it can 

be represented as in the model and the blood flow can be measured. If it’s below a particular 

level, then the corresponding treatment can be given for the patients. In future, we would like 

to develop this application for advancements.  

 

CONCLUSION: 

In this paper, we have introduced picture fuzzy labelling of graphs. And also 

investigated some important properties of picture fuzzy labelling graphs including picture 

fuzzy labelling cycle and PFL tree. Also an application of picture fuzzy graph labelling 

model for human circulatory system has been discussed which may be extended for many 

case studies. Furthermore, we would make a study on picture fuzzy magic labelling of 

graphs.  
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