

Annals of Optimization Theory and Practice

Volume 3, Number 4, 65-82

December 2020

DOI: 10.22121/aotp.2021.264516.1059

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

Optimizing the first type of U-shaped assembly

line balancing problems

Pouria Pourmomen Davani1 . Ahmad Wael Mahmoud Kloub2 . Mazyar Ghadiri

Nejad2


1 Computer Engineering Department, Eastern Mediterranean University, Via Mersin 10, Famagusta, TRNC,

Turkey

2 Industrial Engineering Department, Girne American University, Via Mersin 10, Kyrenia, TRNC, Turkey

 mazyarghadirinejad@gau.edu.tr

(Received: December 1, 2020 / Accepted: December 26, 2020)

Abstract In the literature, there are various types of assembly line balancing problems.

Consequently, different types of solution approaches such as exact, heuristic, and

metaheuristics have been proposed to solve such problems. In this research, we are going

to propose a metaheuristic solution method based on applied grouping evolution

strategies to solve the u-shaped assembly line balancing problem where the aim is the

minimization of the number of workstations considering a given cycle time for the

assembly line. By introducing the just-in-time (JIT) production principle, it can be

proven that the U-shaped assembly line system has a better performance than the

traditional straight-line system. Different test problems from the literature are solved and

key indexes like the line efficiency, smoothness index, and variation, are calculated for

the problems. Then the proposed method is compared to one of the recent solutions

approached based on the genetic algorithm. The results show that the proposed method

has the potential t be considered as one of the most efficient methods in this field.

Keywords Assembly line balancing; U-shaped layout; Ranked positional weight

method; COMSOAL; Grouping evolution strategy algorithm

1. Introduction

Assembly line is defined as the arrangement of workstations where different parts get

together to make a specific final product. The problem of changing the arrangement of

workstations in a way that the optimum throughput and/or performance, upon some

specific criteria, are gained is called an assembly line balancing problem (ALBP) (Kumar

and Mahto, 2013). Usually, the objective of ALBPs is to reduce the number of

workstations as much as possible for a given cycle time (Type-I) or to reduce the cycle

time given a cycle time (Type-II). ALBPs are classified into simple ALBPs (SALBPs),

and General ALBPs (GALBPs) (Becker and Scholl, 2006). SALBPs are the most

https://doi.org/10.7232/aotp.2017.16.1.001

66 Ann Opt The Prac (AOTP), 2020, Vol. 3, No. 4

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

eminent assembly line, which is a serial arrangement of workstations considering that

the same product is running on a straight-line layout (Boysen et al., 2007). According to

Scholl and Becker (2006), this type of problems are classified into four groups

concerning their objectives functions:

 SALBP Type-1 (SALBP-1), which aims to minimize the number of workstations on

the line for a fixed cycle time.

 SALBP Type-2 (SALBP-2), which aims to minimize the cycle time for a fixed

number of workstations on the line.

 SALBP Type-E (SALBP-E) aims to maximize the efficiency of the line

simultaneously minimizing the number of workstations and the cycle time.

 SALBP Type-F (SALBP-F) aims to determine a feasible line for a combination of

the number of workstations and cycle time.

Other problems that are not included in SALBPs are considered as GALBPs. Mixed-

model assembly line balancing (MALBP) or mixed-model sequencing problem (MSP),

and also U-shaped ALBP (UALBP) are categorized as GALBP (Boysen et al., 2007). In

various cases, the traditional SALBs have shown inefficiency in line flexibility, job

monotony, and large inventories. With the invention of just-in-time (JIT), UALBs have

become more popular because of having higher efficiency and more flexibility (Monden,

2011). The U-shaped layout lets the operator work on both front sides of the line, in a

workstation, called a crossover workstation. The more crossover workstations, the more

flexibility in the ALB will be (Hwang et al., 2008). Additionally, there are better sights

of the production line, increasing the personnel oral communications, and the ability of

rebalancing in fast-changing of demands or operating environment. The other advantages

are productivity improvement, reduction in work-in-process inventory, space

requirement, and lead-time are the other benefits of UALBs (Glonegger and Reinhart,

2015). Therefore, SALBs are being replaced by UALBs to adopt industries with JIT

philosophy. In the UALBP, a task can be assigned to a station after all of its predecessors

or successors have been assigned to stations.

UALBPs are a relatively new and promising topic in the ALBPs literature. One of the

first deep studies is related to Miltenburg and Wijngaard (Miltenburg and Wijngaard,

1994) who proposed a dynamic programming formulation to solve 21 relatively small

problems, and develop a heuristic procedure based on the maximum ranked positional

weight (RPW) for large size problems. Later on, Miltenburg and Sparling (Miltenburg

and Sparling, 1995) developed three exact algorithms for the UALBPs: a reaching

dynamic programming algorithm, breadth- and depth-first branch-and-bound algorithms.

To handle larger problems, Scholl and Klein (1999) proposed the ULINO method based

on the branch-and-bound algorithm to solve different versions of ALBPs (Scholl and

Klein, 1999). Erel et al. (2001) developed an SA-based algorithm based on an intelligent

mechanism to search the large solution space effectively Erel et al., (2001). Furthermore,

Gokcen et al. (2005) proposed a shortest route formulation (Gökçen et al., 2005), Gokcen

and Agpak (2006) and Toklu and Ozcan (2008), developed Goal Programming

formulations (Gökçen et al. (2006), Toklu and özcan (2008)), and Jayaswal and Agarwal

Optimizing the first type of U-shaped … 67

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

(2014) used resource-dependent task times to solve UALBPs (Jayaswal and Agarwal,

2014).

According to the definition proposed by Falkenauer (1994), grouping problems aim to

partition the members of a set into different groups where each object is exactly in one

group, where the ordering of groups is not relevant. Since all the possible assignments

are not acceptable in grouping problems (GPs), hence, GPs are featured by an objective

function considering the various combination of groups. Moreover, by using

evolutionary algorithms a group segment is the fundamental block that should be

considered for the search. Based on this fact, scientists have used evolutionary algorithms

to improve GPs (Kashan et al., 2013). GES is a kind of evolutionary algorithm that was

recently proposed for crisp GPs. This method is compatible with the Evolution Strategy

(ES), proposed by Rechenberg (1978), which uses Gaussian mutation during

optimization, while GES uses another similar mutation (Beyer et al., 2002). Some well-

known grouping problems are ALBPs (Nejad and Kashan, (2019), Ghadirinejad et al.,

(2013)), graph coloring (Yuan et al., (2017), Mosa et al., (2017)), bin packing (Pereira,

(2016), Li and Zhang, (2018)), flexible robotic cells (Nejad et al., (2018), Nejad et al.,

(2019), Nejad et al., (2019), Ghadirinejad and Mosallaeipour,(2013)), identical/non-

identical parallel-machines scheduling (Mosallaeipour (2018), Mosallaeipour (2018)),

delivery and emergency problems (Shavarani et al., (2018), Ghadiri Nejad and Banar,

(2018)).

By doing adjusting modification in grouping evolution strategies (GES), proposed by

Kashan et al. for NP-hard types of problems, and modifying the proposed method to deal

with the ALBPs by Nejad et al. (2018), are solved. The modified strategy is applicable

for deterministic UALBPs, aiming to optimize the system with the smallest sets of

workstations. In this study, regards to study of Hwang et al. (2008) and Erel et al. (2001),

we try to use a modified version of the GES proposed by Kashan et al. (2009), and later

on by Nejad et al. (2018) to solve some UALBP standard test problems from the

literature. To find out an enhanced result, we use revised-RPW. The method proposed

by Fathi et al. (2011).

This study is continued by the following sections: In Chapter 2, the proposed algorithm

and all the utilized techniques to improve the proposed method are explained. Chapter 3,

contains the computational results and the related discussions, finally the study is ended

by concluding the study and proposing some potential future topics.

2. Proposed Algorithm

To achieve the goals of this study, a hybrid algorithm including an exact algorithm to

find an initial solution and a grouping meta-heuristic algorithm to improve the solution

are developed. Then, the proposed algorithm is coded and solved by MATLAB software,

and then by using the standard problems considered in Hwang et al. (2008), the quality

of the proposed method is measured.

The simple case of a UALBP is one of the most discussed issues in combinational

optimization. In this problem precedence graph of activities are given where activity j

68 Ann Opt The Prac (AOTP), 2020, Vol. 3, No. 4

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

has a processing time of 𝑇𝑗 unit. The objective is assigning the activities to workstations

considering prerequisite activities with fixed cycle time, aiming to minimize the number

of workstations. The proposed algorithm in this research is a two-stage algorithm such

as (1) creating an initial solution, and (2) improving the initial solution to achieve the

final solution.

2.1. Generating an Initial Solution

There are several methods for determining the initial solution of the UALBP that each

of them has its strengths and weaknesses. These methods are included in all exact and

heuristic methods that any of them can be considered as the initial solution

algorithm. The COMSOAL method proposed by Arcus (1965), as one of the well-known

methods in this field, assigns the tasks from the first one in the precedence graph to the

workstations randomly, considering the given cycle time. As it is evident at the first

glance, one of the strengths of this method besides the performance simplicity is the

ability to find different results due to the use of a random selection process for the

allocation of the activities in each step. Because of having much flexibility and high-

performance power, this method gives the desired result in every. Hence, it is necessary

to check the results of several runs to reach the best outcome to calculate the line

efficiency and smoothness index.

In contrast, there is a measure to evaluate a new meta-heuristic algorithm to find its

performance. Hence, generating the same initial solutions for a problem with constant

parameters such as cycle time, processing times, and precedence graph, seems necessary.

Therefore, the COMSOAL method has been used only in the second state for improving

the initial solution. Leaving aside the COMSOAL method to find a way to create an

initial solution that every time gives a constant solution for the same problem, the Ranked

Positional Weight (RPW) method Helgeson et al. (1961) is considered. After some

necessary changes to improve the result, the Revised-RPW method was proposed.

2.1.1 Algorithm of the RPW for UALBP

Based on the steps of the RPW method Helgeson et al. (1961), the weight of each task

must be calculated in both the forward direction and backward direction. The parameters

used in this method are the following:

𝑇(𝑆𝑖) Total time of each station

𝑇(𝑥) Time of each task

CT Given cycle time

N Number of tasks

M Number of workstations

S Minimum feasible number of workstation

MCT Minimum feasible cycle time

CT* Modified cycle time

Optimizing the first type of U-shaped … 69

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

To apply a priority for each task, we have used a precedence network calculating task’s

weights that can be explained as the total of activity time, and times of the various

succeed or progress, correspondingly. There are two criteria for assigning tasks to

workstations such as succession and precedence priorities and having free space to

handle the assigning task to the workstations. In the case of multiple available tasks, the

one with the highest weight is assigned. Whenever all tasks have been bounded we say

the assignment is complete.

In this solution, CT is replaced by a new symbol CT* which is computed as below:

𝑆 = ∑ 𝑇(𝑥)𝑛
𝑖=1 / 𝐶𝑇 (1)

If S becomes a non-integer value it should be rounded up.

𝑀𝐶𝑇 = ∑ 𝑇(𝑥)/𝑆𝑛
𝑖=1 (2)

𝐶𝑇∗ = [(𝑀𝐶𝑇 + 𝑆)/2] (3)

It should be kept in mind that MCT < CT* < CT. As it can be concluded CT can be

chosen freely in the domain (MCT, CT). However, choosing CT* as CT yields more

appropriate outputs. To maintain the preferred circumstances, the following relations

must be satisfied:

𝑇(𝑆𝑖) = ∑ 𝑇(𝑥) ≤ 𝐶𝑇 𝑖 = 1, … , 𝑀𝑥∈𝑆𝑖
 (4)

𝑖𝑓 (𝑥, 𝑦) ∈ 𝑃, 𝑥 ∈ 𝑆𝑖 𝑎𝑛𝑑 𝑦 ∈ 𝑆𝑗 𝑡ℎ𝑒𝑛 𝑖 ≤ 𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. (5)

𝑖𝑓 (𝑦, 𝑧) ∈ 𝑃, 𝑦 ∈ 𝑆𝑗 𝑎𝑛𝑑 𝑧 ∈ 𝑆𝑘 𝑡ℎ𝑒𝑛 𝑘 ≤ 𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧. (6)

Equation (4) implies that the total task time belongs to a workstation cannot be more than

CT. Equation (5) means that if task x is the precedence of task y, its workstation number

must not be more than the workstation number of task y. Similarly, equation (6)

guarantees that there is a possibility to assign a task to a workstation after the workstation

that its predecessor belongs to, because of the U-shaped layout configurations. In the

following, the steps of the RPW algorithm are explained.

 Step 1: Computing the least quantity of workstations S, the least possible cycle time

MCT, and CT* = [(MCT + CT)/2].

 Step 2: Adopting a new workstation and computing every work element's weight in

two ways of forwarding and backward direction. After that, the activities,

appropriate for assigning, are identified and a candidate list is generated.

 Step 3: Arrange the weight of work elements in descending order.

 Step 4: Assign the first activity containing the highest weight, to the first station.

 Step 5: Calculate the idle time (IT) for station r that has k task with the below

formula:

70 Ann Opt The Prac (AOTP), 2020, Vol. 3, No. 4

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

𝐼𝑇 = 𝐶𝑇∗ − ∑ 𝑡ᵢᵣ𝑘
𝑖=1 (7)

 Step 6: Comparing the time of the first none assigned activity that has the highest

positional weight with the IT of the last work station, Afterwards, assigning the

activity if its process time is not more than the last work station’s IT.

 Step 7: Assign an activity to a new workstation if its duration is bigger than the IT

of the workstation, and go to step 5.

2.1.2 Revised-RPW Method

The RPW method proposed by Helgeson et al. (1961), is modified according to the

flowchart shown in Figure :

Optimizing the first type of U-shaped … 71

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

Figure 1. Flowchart of Revised-RPW

72 Ann Opt The Prac (AOTP), 2020, Vol. 3, No. 4

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

2.2. Initial Solution Improvement until Achieving Final Solution

To find the optimal solution, the following steps are performed.

2.2.1. Using a meta-heuristic algorithm for finding some alternative solutions

For solving ALBPs, according to NP-hardness of such problems, each of the meta-

heuristic algorithm like Genetic Algorithm (Nejad et al., 2018), Tabu Search (Toklu and

özcan, 2008), Ant Colony (López-Ibáñez et al., (2015), Dorigo et al., (2006)), Simulated

Annealing (Ghadiri Nejad et al., 2018), Local Search (Vizvari et al., 2018), Grey Wolf

(Vatankhah Barenji et al., (2018), Nadimi-Shahraki et al., (2021)), Memetic algorithm

(Pereira et al., (2018)), etc. may be used. In this study, first, we utilize the GES algorithm

to find some alternative solutions. This method applies mutation operator to avoid static

solutions, in the way that first, several tasks of the initial solution are removed, then by

using a heuristic technique, the missing tasks are assigned and the solution is completed.

In Figure 2, we briefly describe all the steps.

Figure 2. Flowchart of Mutation Operator

Optimizing the first type of U-shaped … 73

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

2.2.2. Using a heuristic method for assigning the activities after mutation

The mutation operator is frequently used in meta-heuristic algorithms, especially in GES

to find a better solution without any static result in search. In this method, after removing

some assigned activities from related workstations according to a special pattern, the

removed tasks are assigned gain to the workstations by a heuristic method. Noted that in

this step we could not use revised-RPW because of its unique solution in similar cases.

Considering the simplicity and flexibility of the COMSOAL method (Arcus, 1965), we

utilized it in this step of the algorithm. The flexibility of this method is because of

generating different solutions by a random selection process among activities that are

ready to assign in each step.

The classical COMSOAL method starts from the first node (activity) and continues with

the nodes that do not have any predecessor. It assigns the activities to workstations

considering the idle time of stations. However, in our case, after performing the mutation

operator, maybe in the middle of the precedence diagram must be assigned. Therefore,

at first, the algorithm must distinguish which activities have no predecessor or successor

and after that, it must ignore the assigning of those activities that have previously been

assigned. To create these changes in the revised algorithm, there is a constraint for

predecessor and successor activities, which their algorithm are as below:

 Step 1: Choose the activities without predecessor or successor that are ready to

assign.

 Step 2: Finding the possible workstations which activity can be assigned.

 Step 3: Find the last workstation that contains predecessor activities (MPWS) and

successor activities (MSWS) of the chosen task. Then, compare them and choose

the minimum one.

 Step 4: Control the assumption that the chosen activity’s workstation number must

be equal or bigger than the workstation number that we described in step3.

 Step 5: Remove the assignment of the chosen activity, if the assumption of step 4

has been violated.

Figure 3 illustrates the mentioned steps in a flowchart format. In this flowchart, we

considered APWS as an appropriate workstation for assigning activities that are ready to

be assigned.

74 Ann Opt The Prac (AOTP), 2020, Vol. 3, No. 4

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

1 Figure 2.2.2. Flowchart of Revised-COMSOAL

2.3. Using a Method to Select the Best Solution in Every Step

After changing the solution method in the proposed algorithm and improving it in every

step, in addition to the chosen result of the previous step, two new solutions are

generated. To find the best result for producing the next solution, it is necessary to

compare all three solutions in every step. In this regard, a method based on the

smoothness index (SI), which is explained later, is considered as the selection operator.

Figure 4 describes the improvement of the initial solution.

Optimizing the first type of U-shaped … 75

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

2 Figure 4. Flowchart of the proposed algorithm

3. Computational Results

3.1. Simulation Setup and Performance Metrics

In this chapter, the results of the proposed methods are compared with some well-known

problems and the solutions for the considered test problems are compared with the best

solutions that are already obtained by Hwang et al. (2008). The needed data to examine

76 Ann Opt The Prac (AOTP), 2020, Vol. 3, No. 4

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

the mentioned methods and to compare the results have been acquired from their study.

All procedures were implemented in MATLAB 2013a software and executed on an

Intel(R) Pentium(R) Dual CPU computer with 2.00GHz of CPU speed and 4.00 GB of

RAM.

For the performance measurement of the proposed algorithm, the results of using the

selection operator method are compared by solving well-known problems. The proposed

algorithm has several parts and the initial solution may be the optimal solution. The

results reveal that by the using proposed method, the initial solution will be improved to

the optimal or a near-optimal solution in all the test problems. The perfect balance of an

assembly line is attained by the combination of work elements in a way that the total

busy time of workstations will be the same as cycle time. Since a perfect balance can

rarely happen, some other metrics are used in UALBP type-1 to compare different

combinations. These metrics can evaluate the performance and efficiency of the balance.

Several workstations (NWS): Having less NWS means more proper task dispatch,

which leads to a more efficient balance. Less NWS can save the budgets and working

area.

Line Efficiency (LE): LE is yield by summing up all workstation’s time to the CT

divided by the total workstation number. It reflects the percentage of the line's usage.

Higher values of LE is more desirable out of an ideal value of one hundred. To maximize

LE the workstation number must be minimized. LE is calculated by equation (8).

𝐿𝐸 = (
∑ 𝑇(𝑆𝑖)

𝑚
𝑖=1

𝑀 ∗ 𝐶𝑇
) ∗ 100 (8)

where 𝑇(𝑆𝑖) is the total time of tasks that there are in the workstation i and calculated by

equation (9).

𝑇(𝑆𝑖) = ∑ 𝑇𝑗𝑗∈𝑆𝑖
 (9)

Smoothness Index (SI): An important performance variable in a production line. SI

indicates the total time when a workstation is idle. It usually happens when an improper

assignment is done. The ideal value for SI is zero, which shows a perfect balance. The

minimum value of SI can be reached when the differences of the workstations’ workloads

are decreased as much as possible. SI can be computed by equation (10).

𝑆𝐼 = √∑ (𝑇(𝑆𝑚𝑎𝑥)−𝑇(𝑆𝑖))
2𝑚

𝑖=1

𝑚
 (10)

where 𝑇(𝑆𝑚𝑎𝑥) is the maximum value of 𝑇(𝑆𝑖).

This non-linear function given by equation (10) speeds up the transmission of activities

from low to the high-pressure workstation. Therefore, the chance of getting an empty

workstation in the next solutions will be increased.

Optimizing the first type of U-shaped … 77

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

Variation (V): This is another performance variable of a production line by considering

the utilization of each workstation. Similar to the SI, the minimum amount of V can be

accomplished by decreasing the difference of workloads among workstations. V is

calculated by equation (11).

𝑉 = √
∑ (𝑈𝑖− 𝑎𝑣𝑒𝑟)2𝑚

𝑖=1

𝑚
 (11)

where 𝑎𝑣𝑒𝑟 is an average utilization for all workstations, which is calculated by equation

(12). Moreover, the utilization of the workstation, Si, is calculated by equation (13).

𝑎𝑣𝑒𝑟 = ∑ 𝑈𝑖 𝑚⁄
𝑚

𝑖=1
 (12)

𝑈𝑖 = 𝑇(𝑆𝑖)/𝑇(𝑆𝑚𝑎𝑥) (13)

3.2. Results Obtained by the Proposed Method

To find the performance level of the proposed method, different types of test problems

are considered. For each problem, the number of the tasks, the cycle time, the optimum

number of workstations found by Hwang et al. (2008), the number of workstations

found by the RPW method, Revised-RPW method, and the proposed GES are reported.

3 Table 1.Number of workstations

Problem
Number

of tasks

Cycle

time

The optimum

number of

workstations

RPW

method

Revised-RPW

method

GES with

Revised-RPW

method

Mitchell 21
14

21

8

5

9

6

8

6

8

5

Heskia 28
138

205

8

5

10

6

8

6

8

5

Sawyer 30
27

33

13

10

15

13

13

11

13

10

Tonge 70
176

364

21

10

23

11

21

10

21

10

Arcus 1 83
6842

8412

12

10

13

10

12

10

12

10

Arcus 2 111
5755

10743

27

15

29

17

27

15

27

15

The results in Table 1 show that in all of the considered test problems, the optimum

number of workstations obtained by the proposed GES method is the optimal answer.

3.3. Comparing with a GA-Based Method

In Table 2, the test problems with the same cycle time mentioned in Table 1 are

considered again. In this table, for the GES methods, two indexes such as LE, and V are

calculated and compared to the obtained solutions proposed GA by Hwang et al. (2008).

78 Ann Opt The Prac (AOTP), 2020, Vol. 3, No. 4

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

Table 2. Comparisons with the GA algorithm

Problem
Number

of tasks

Cycle

time

GES with Revised-RPW

method

 Multi-objective GA

Fitness function E

No. of

stations
LE VI

No. of

stations
LE VI

Mitchell 21
14

21

8

5

93.75

100.0

0.023

0.000

 8

5

93.75

100.0

0.055

0.000

Heskia 28
138

205

8

5

92.75

99.90

0.006

0.001

 8

5

92.70

99.90

0.112

0.001

Sawyer 30
27

33

13

10

92.31

98.18

0.023

0.014

 13

10

92.31

98.18

0.071

0.024

Tonge 70
176

364

21

10

94.97

96.43

0.042

0.006

 21

10

95.00

96.40

0.043

0.023

Arcus 1 83
6842

8412

12

10

92.26

90.22

0.017

0.020

 12

10

92.20

90.00

0.097

0.123

Arcus 2 111
5755

10743

27

15

96.79

93.38

0.019

0.017

 27

15

96.79

93.38

0.036

0.063

According to the above table, the results found by the proposed GES method is better or

the same as the reported solutions by the genetic algorithm in the literature.

4. Conclusion

In this research, the assembly line balancing problem considering reducing the number

of workstations with a given cycle time is studied. Primarily, a mathematical model and

then two new methods including an exact algorithm and a hybrid grouping meta-heuristic

algorithm were proposed. The former one was to find an initial solution and the latter

one was to improve the initial solution to achieve the best solution, by using a method

for selection operator to solve U-shaped assembly line balancing problems. The proposed

algorithm is based on the grouping evolution strategies method, while the most useful

meta-heuristic algorithm that already exists, is based on the genetic algorithm. Moreover,

to increase the performance of the proposed procedure, a modified version of the

COMSOAL method was used. The performance of the proposed method was compared

to one of the proposed algorithms from the literature. The results illustrated that the

proposed algorithm is one of the most efficient algorithms to solve such problems.

Various topics may be considered for possible future studies. For instance, considering

pre-assignment of some of the given tasks to especial workstations, and similarly,

limitation to assign two or more tasks in the same workstations. Additionally,

minimization of cycle time may be considered as the second or simultaneous objective

function, which is the other important objective of assembly balancing problems to

decrease the working hours. Using a goal programming approach to optimize such

problems, or using other meth-heuristic methods like Particle Swarm Optimization, Grey

wolf optimization, neural network, etc. may be of interest to researchers in the future.

Finally, considering non-deterministic processing time with any of the mentioned

objective function may be a good topic to be considered.

Optimizing the first type of U-shaped … 79

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

References

1. Arcus, A. L. (1965). A computer method of sequencing operations for assembly

lines. International Journal of Production Research, 4(4), 259-277.

2. Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalized

assembly line balancing. European journal of operational research, 168(3), 694-715.

3. Beyer, H. G., & Schwefel, H. P. (2002). Evolution strategies–a comprehensive

introduction. Natural computing, 1(1), 3-52.

4. Boros, P., Fehér, O., Lakner, Z., Niroomand, S., & Vizvári, B. (2016). Modeling

supermarket re-layout from the owner’s perspective. Annals of Operations

Research, 238(1-2), 27-40.

5. Boysen, N., Fliedner, M., & Scholl, A. (2007). A classification of assembly line

balancing problems. European journal of operational research, 183(2), 674-693.

6. Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE

computational intelligence magazine, 1(4), 28-39.

7. Erel, E., Sabuncuoglu, I., & Aksu, B. A. (2001). Balancing of U-type assembly

systems using simulated annealing. International Journal of Production Research,

39(13), 3003-3015.

8. Falkenauer, E. (1994). A new representation and operators for genetic algorithms

applied to grouping problems. Evolutionary computation, 2(2), 123-144.

9. Fathi, M., Alvarez, M. J., & Rodríguez, V. (2011). A new heuristic approach to

solving u-shape assembly line balancing problems type-1. International Journal of

Industrial and Manufacturing Engineering, 5(11), 2115-2123.

10. Ghadiri Nejad, M., & Banar, M. (2018). Emergency response time minimization by

incorporating ground and aerial transportation. Annals of Optimization Theory and

Practice, 1(1), 43-57.

11. Ghadiri Nejad, M., Gueden, H., Vizvari, B., & Vatankhah Barenji, R. (2018). A

mathematical model and simulated annealing algorithm for solving the cyclic

scheduling problem of a flexible robotic cell. Advances in Mechanical Engineering,

10(1), 1687814017753912.

12. Ghadirinejad, M., & Mosallaeipour, S. (2013). A new approach to optimize a

flexible manufacturing cell. In 1st international conference on new directions in

business, management, finance and economics (Vol. 38).

13. Ghadirinejad, M., Kashan, A. H., & Rismanchian, F. (2013). A new competitive

method for solving assembly line balancing problem. In 1st Int. Conf. New

Directions in Business, Management, Finance and Economics.

14. Glonegger, M. and G. Reinhart, Planning of synchronized assembly lines taking into

consideration human performance fluctuations. Production Engineering, 2015. 9(2):

p. 277-287.

15. Gökçen, H., & Agˇpak, K. (2006). A goal programming approach to simple U-line

balancing problem. European journal of operational research, 171(2), 577-585.

16. Gökçen, H., Ağpak, K., Gencer, C., & Kizilkaya, E. (2005). A shortest route

formulation of simple U-type assembly line balancing problem. Applied

Mathematical Modelling, 29(4), 373-380.

80 Ann Opt The Prac (AOTP), 2020, Vol. 3, No. 4

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

17. Helgeson, W. B., & Birnie, D. P. (1961). Assembly line balancing using the ranked

positional weight technique. Journal of industrial engineering, 12(6), 394-398.

18. Hwang, R. K., Katayama, H., & Gen, M. (2008). U-shaped assembly line balancing

problem with genetic algorithm. International Journal of Production Research,

46(16), 4637-4649.

19. Jayaswal, S., & Agarwal, P. (2014). Balancing U-shaped assembly lines with

resource dependent task times: A Simulated Annealing approach. Journal of

Manufacturing Systems, 33(4), 522-534.

20. Kashan, A. H., Jenabi, M., & Kashan, M. H. (2009, December). A new solution

approach for grouping problems based on evolution strategies. In 2009 International

Conference of Soft Computing and Pattern Recognition (pp. 88-93). IEEE.

21. Kashan, A. H., Kashan, M. H., & Karimiyan, S. (2013). A particle swarm optimizer

for grouping problems. Information Sciences, 252, 81-95.

22. Kumar, N., & Mahto, D. (2013). Assembly line balancing: a review of developments

and trends in approach to industrial application. Global Journal of Research In

Engineering.

23. Li, X., & Zhang, K. (2018). Single batch processing machine scheduling with two-

dimensional bin packing constraints. International Journal of Production

Economics, 196, 113-121.

24. López-Ibáñez, M., Stützle, T., & Dorigo, M. (2015). Ant Colony Optimization: A

Component-Wise Overview.

25. Miltenburg, G. J., & Wijngaard, J. (1994). The U-line line balancing problem.

Management science, 40(10), 1378-1388.

26. Miltenburg, J., & Sparling, D. (1995). Optimal solution algorithms for the U-line

balancing problem. Relatrio tecnico, McMaster University, Hamilton, Canada.

Citado na.

27. Mirzaei, N., Niroomand, S., & Zare, R. (2016). Application of statistical process

control in service industry: A case study of the restaurant sector. Journal of

Modelling in Management.

28. Monden, Y. (2011). Toyota production system: an integrated approach to just-in-

time. CRc Press.

29. Mosa, M. A., Hamouda, A., & Marei, M. (2017). Graph coloring and ACO based

summarization for social networks. Expert Systems with Applications, 74, 115-126.

30. Mosallaeipour, S., Nazerian, R., & Ghadirinejad, M. (2018). A Two-Phase

Optimization Approach for Reducing the Size of the Cutting Problem in the Box-

Production Industry: A Case Study. In Industrial Engineering in the Industry 4.0 Era

(pp. 63-81). Springer, Cham.

31. Mosallaeipour, S., Nejad, M. G., Shavarani, S. M., & Nazerian, R. (2018). Mobile

robot scheduling for cycle time optimization in flow-shop cells, a case study.

Production Engineering, 12(1), 83-94.

32. Nadimi-Shahraki, M. H., Taghian, S., & Mirjalili, S. (2021). An improved grey wolf

optimizer for solving engineering problems. Expert Systems with Applications, 166,

113917.

Optimizing the first type of U-shaped … 81

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

33. Nejad, M. G., & Kashan, A. H. (2019). An Effective Grouping Evolution Strategy

Algorithm Enhanced with Heuristic Methods for Assembly Line Balancing

Problem. Journal of Advanced Manufacturing Systems, 18(03), 487-509.

34. Nejad, M. G., Güden, H., & Vizvári, B. (2019). Time minimization in flexible

robotic cells considering intermediate input buffers: a comparative study of three

well-known problems. International Journal of Computer Integrated Manufacturing,

32(8), 809-819.

35. Nejad, M. G., Kashan, A. H., & Shavarani, S. M. (2018). A novel competitive hybrid

approach based on grouping evolution strategy algorithm for solving U-shaped

assembly line balancing problems. Production Engineering, 12(5), 555-566.

36. Nejad, M. G., Kovács, G., Vizvári, B., & Barenji, R. V. (2018). An optimization

model for cyclic scheduling problem in flexible robotic cells. The International

Journal of Advanced Manufacturing Technology, 95(9), 3863-3873.

37. Nejad, M. G., Shavarani, S. M., Güden, H., & Barenji, R. V. (2019). Process

sequencing for a pick-and-place robot in a real-life flexible robotic cell. The

International Journal of Advanced Manufacturing Technology, 103(9), 3613-3627.

38. Nejad, M. G., Shavarani, S. M., Vizvári, B., & Barenji, R. V. (2018). Trade-off

between process scheduling and production cost in cyclic flexible robotic cells. The

International Journal of Advanced Manufacturing Technology, 96(1), 1081-1091.

39. Niroomand, S. (2018). A multi-objective based direct solution approach for linear

programming with intuitionistic fuzzy parameters. Journal of Intelligent & Fuzzy

Systems, 35(2), 1923-1934.

40. Niroomand, S., Bazyar, A., Alborzi, M., & Mahmoodirad, A. (2018). A hybrid

approach for multi-criteria emergency center location problem considering existing

emergency centers with interval type data: a case study. Journal of Ambient

Intelligence and Humanized Computing, 9(6), 1999-2008.

41. Niroomand, S., Hadi-Vencheh, A., Mirzaei, N., & Molla-Alizadeh-Zavardehi, S.

(2016). Hybrid greedy algorithms for fuzzy tardiness/earliness minimisation in a

special single machine scheduling problem: case study and

generalisation. International Journal of Computer Integrated Manufacturing, 29(8),

870-888.

42. Niroomand, S., Takács, S., & Vizvári, B. (2011). To lay out or not to lay

out?. Annals of Operations Research, 191(1), 183-192.

43. Niroomand, S., & Vizvári, B. (2013). A mixed integer linear programming

formulation of closed loop layout with exact distances. Journal of Industrial and

Production Engineering, 30(3), 190-201.

44. Pereira, J. (2016). Procedures for the bin packing problem with precedence

constraints. European Journal of Operational Research, 250(3), 794-806.

45. Pereira, J., Ritt, M., & Vásquez, Ó. C. (2018). A memetic algorithm for the cost-

oriented robotic assembly line balancing problem. Computers & Operations

Research, 99, 249-261.

46. Rechenberg, I. (1978). Evolutionsstrategien. In Simulationsmethoden in der

Medizin und Biologie (pp. 83-114). Springer, Berlin, Heidelberg.

82 Ann Opt The Prac (AOTP), 2020, Vol. 3, No. 4

© 2020 The Authors.

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran

47. Salehi, M., Maleki, H. R., & Niroomand, S. (2020). Solving a new cost-oriented

assembly line balancing problem by classical and hybrid meta-heuristic

algorithms. Neural Computing and Applications, 32(12), 8217-8243.

48. Sanei, M., Mahmoodirad, A., & Niroomand, S. (2016). Two-stage supply chain

network design problem with interval data. International Journal of e-Navigation

and Maritime Economy, 5, 74-84.

49. Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution

procedures for simple assembly line balancing. European Journal of Operational

Research, 168(3), 666-693.

50. Scholl, A., & Klein, R. (1999). ULINO: Optimally balancing U-shaped JIT

assembly lines. International Journal of Production Research, 37(4), 721-736.

51. Shavarani, S. M., Nejad, M. G., Rismanchian, F., & Izbirak, G. (2018). Application

of hierarchical facility location problem for optimization of a drone delivery system:

a case study of Amazon prime air in the city of San Francisco. The International

Journal of Advanced Manufacturing Technology, 95(9), 3141-3153.

52. Taassori, M., Taassori, M., Niroomand, S., Vizvári, B., Uysal, S., & Hadi-Vencheh,

A. (2015). OPAIC: An optimization technique to improve energy consumption and

performance in application specific network on chips. Measurement, 74, 208-220.

53. Tavana, M., Santos-Arteaga, F. J., Mahmoodirad, A., Niroomand, S., & Sanei, M.

(2018). Multi-stage supply chain network solution methods: hybrid metaheuristics

and performance measurement. International Journal of Systems Science:

Operations & Logistics, 5(4), 356-373.

54. Toklu, B., & özcan, U. (2008). A fuzzy goal programming model for the simple U-

line balancing problem with multiple objectives. Engineering Optimization, 40(3),

191-204.

55. Vatankhah Barenji, R., Ghadiri Nejad, M., & Asghari, I. (2018). Optimally sized

design of a wind/photovoltaic/fuel cell off-grid hybrid energy system by modified-

gray wolf optimization algorithm. Energy & Environment, 29(6), 1053-1070.

56. Vizvari, B., Guden, H., & G Nejad, M. (2018). Local search based meta-heuristic

algorithms for optimizing the cyclic flexible manufacturing cell problem. Annals of

Optimization Theory and Practice, 1(3), 15-32.

57. Yuan, L., Qin, L., Lin, X., Chang, L., & Zhang, W. (2017). Effective and efficient

dynamic graph coloring. Proceedings of the VLDB Endowment, 11(3), 338-351.

