
 

Annals of Optimization Theory and Practice 

Volume 3, Number 4, 65-82 

December 2020 

DOI: 10.22121/aotp.2021.264516.1059  

 

© 2020 The Authors. 

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran 

Optimizing the first type of U-shaped assembly 

line balancing problems 

Pouria Pourmomen Davani1 . Ahmad Wael Mahmoud Kloub2 . Mazyar Ghadiri 

Nejad2
 

1 Computer Engineering Department, Eastern Mediterranean University, Via Mersin 10, Famagusta, TRNC, 

Turkey 

2 Industrial Engineering Department, Girne American University, Via Mersin 10, Kyrenia, TRNC, Turkey 

 mazyarghadirinejad@gau.edu.tr 

(Received: December 1, 2020 / Accepted: December 26, 2020) 

 

Abstract In the literature, there are various types of assembly line balancing problems. 

Consequently, different types of solution approaches such as exact, heuristic, and 

metaheuristics have been proposed to solve such problems. In this research, we are going 

to propose a metaheuristic solution method based on applied grouping evolution 

strategies to solve the u-shaped assembly line balancing problem where the aim is the 

minimization of the number of workstations considering a given cycle time for the 

assembly line. By introducing the just-in-time (JIT) production principle, it can be 

proven that the U-shaped assembly line system has a better performance than the 

traditional straight-line system. Different test problems from the literature are solved and 

key indexes like the line efficiency, smoothness index, and variation, are calculated for 

the problems. Then the proposed method is compared to one of the recent solutions 

approached based on the genetic algorithm. The results show that the proposed method 

has the potential t be considered as one of the most efficient methods in this field. 

Keywords Assembly line balancing; U-shaped layout; Ranked positional weight 

method; COMSOAL; Grouping evolution strategy algorithm

 

1. Introduction 

Assembly line is defined as the arrangement of workstations where different parts get 

together to make a specific final product. The problem of changing the arrangement of 

workstations in a way that the optimum throughput and/or performance, upon some 

specific criteria, are gained is called an assembly line balancing problem (ALBP) (Kumar 

and Mahto, 2013). Usually, the objective of ALBPs is to reduce the number of 

workstations as much as possible for a given cycle time (Type-I) or to reduce the cycle 

time given a cycle time (Type-II). ALBPs are classified into simple ALBPs (SALBPs), 

and General ALBPs (GALBPs) (Becker and Scholl, 2006). SALBPs are the most 
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eminent assembly line, which is a serial arrangement of workstations considering that 

the same product is running on a straight-line layout (Boysen et al., 2007). According to 

Scholl and Becker (2006), this type of problems are classified into four groups 

concerning their objectives functions: 

 SALBP Type-1 (SALBP-1), which aims to minimize the number of workstations on 

the line for a fixed cycle time.  

 SALBP Type-2 (SALBP-2), which aims to minimize the cycle time for a fixed 

number of workstations on the line.  

 SALBP Type-E (SALBP-E) aims to maximize the efficiency of the line 

simultaneously minimizing the number of workstations and the cycle time. 

 SALBP Type-F (SALBP-F) aims to determine a feasible line for a combination of 

the number of workstations and cycle time.  

Other problems that are not included in SALBPs are considered as GALBPs. Mixed-

model assembly line balancing (MALBP) or mixed-model sequencing problem (MSP), 

and also U-shaped ALBP (UALBP) are categorized as GALBP (Boysen et al., 2007). In 

various cases, the traditional SALBs have shown inefficiency in line flexibility, job 

monotony, and large inventories. With the invention of just-in-time (JIT), UALBs have 

become more popular because of having higher efficiency and more flexibility (Monden,  

2011). The U-shaped layout lets the operator work on both front sides of the line, in a 

workstation, called a crossover workstation. The more crossover workstations, the more 

flexibility in the ALB will be (Hwang et al., 2008). Additionally, there are better sights 

of the production line, increasing the personnel oral communications, and the ability of 

rebalancing in fast-changing of demands or operating environment. The other advantages 

are productivity improvement, reduction in work-in-process inventory, space 

requirement, and lead-time are the other benefits of UALBs (Glonegger and Reinhart, 

2015). Therefore, SALBs are being replaced by UALBs to adopt industries with JIT 

philosophy. In the UALBP, a task can be assigned to a station after all of its predecessors 

or successors have been assigned to stations. 

UALBPs are a relatively new and promising topic in the ALBPs literature. One of the 

first deep studies is related to Miltenburg and Wijngaard (Miltenburg and Wijngaard, 

1994) who proposed a dynamic programming formulation to solve 21 relatively small 

problems, and develop a heuristic procedure based on the maximum ranked positional 

weight (RPW) for large size problems. Later on, Miltenburg and Sparling (Miltenburg 

and Sparling, 1995) developed three exact algorithms for the UALBPs: a reaching 

dynamic programming algorithm, breadth- and depth-first branch-and-bound algorithms. 

To handle larger problems, Scholl and Klein (1999) proposed the ULINO method based 

on the branch-and-bound algorithm to solve different versions of ALBPs (Scholl and 

Klein, 1999). Erel et al. (2001) developed an SA-based algorithm based on an intelligent 

mechanism to search the large solution space effectively Erel et al., (2001). Furthermore, 

Gokcen et al. (2005) proposed a shortest route formulation (Gökçen et al., 2005), Gokcen 

and Agpak (2006) and Toklu and Ozcan (2008), developed Goal Programming 

formulations (Gökçen et al. (2006), Toklu and özcan (2008)), and Jayaswal and Agarwal 
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(2014) used resource-dependent task times to solve UALBPs (Jayaswal and Agarwal, 

2014). 

According to the definition proposed by Falkenauer (1994), grouping problems aim to 

partition the members of a set into different groups where each object is exactly in one 

group, where the ordering of groups is not relevant. Since all the possible assignments 

are not acceptable in grouping problems (GPs), hence, GPs are featured by an objective 

function considering the various combination of groups. Moreover, by using 

evolutionary algorithms a group segment is the fundamental block that should be 

considered for the search. Based on this fact, scientists have used evolutionary algorithms 

to improve GPs (Kashan et al., 2013). GES is a kind of evolutionary algorithm that was 

recently proposed for crisp GPs. This method is compatible with the Evolution Strategy 

(ES), proposed by Rechenberg (1978), which uses Gaussian mutation during 

optimization, while GES uses another similar mutation (Beyer et al., 2002). Some well-

known grouping problems are ALBPs (Nejad and  Kashan, (2019), Ghadirinejad et al., 

(2013)), graph coloring (Yuan et al., (2017), Mosa et al., (2017)), bin packing (Pereira, 

(2016), Li and Zhang, (2018)), flexible robotic cells (Nejad et al., (2018), Nejad et al., 

(2019), Nejad et al., (2019), Ghadirinejad and Mosallaeipour,(2013)), identical/non-

identical parallel-machines scheduling (Mosallaeipour (2018), Mosallaeipour (2018)), 

delivery and emergency problems (Shavarani et al., (2018), Ghadiri Nejad and  Banar, 

(2018)). 

By doing adjusting modification in grouping evolution strategies (GES), proposed by 

Kashan et al. for NP-hard types of problems, and modifying the proposed method to deal 

with the ALBPs by Nejad et al. (2018), are solved. The modified strategy is applicable 

for deterministic UALBPs, aiming to optimize the system with the smallest sets of 

workstations. In this study, regards to study of Hwang et al. (2008) and Erel et al. (2001), 

we try to use a modified version of the GES proposed by Kashan et al. (2009), and later 

on by Nejad et al. (2018) to solve some UALBP standard test problems from the 

literature. To find out an enhanced result, we use revised-RPW. The method proposed 

by Fathi et al. (2011). 

This study is continued by the following sections: In Chapter 2, the proposed algorithm 

and all the utilized techniques to improve the proposed method are explained. Chapter 3, 

contains the computational results and the related discussions, finally the study is ended 

by concluding the study and proposing some potential future topics. 

2. Proposed Algorithm 

To achieve the goals of this study, a hybrid algorithm including an exact algorithm to 

find an initial solution and a grouping meta-heuristic algorithm to improve the solution 

are developed. Then, the proposed algorithm is coded and solved by MATLAB software, 

and then by using the standard problems considered in Hwang et al. (2008), the quality 

of the proposed method is measured.  

The simple case of a UALBP is one of the most discussed issues in combinational 

optimization. In this problem precedence graph of activities are given where activity j 
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has a processing time of 𝑇𝑗 unit. The objective is assigning the activities to workstations 

considering prerequisite activities with fixed cycle time, aiming to minimize the number 

of workstations. The proposed algorithm in this research is a two-stage algorithm such 

as (1) creating an initial solution, and (2) improving the initial solution to achieve the 

final solution. 

2.1.  Generating an Initial Solution 

There are several methods for determining the initial solution of the UALBP that each 

of them has its strengths and weaknesses. These methods are included in all exact and 

heuristic methods that any of them can be considered as the initial solution 

algorithm. The COMSOAL method proposed by Arcus (1965), as one of the well-known 

methods in this field, assigns the tasks from the first one in the precedence graph to the 

workstations randomly, considering the given cycle time. As it is evident at the first 

glance, one of the strengths of this method besides the performance simplicity is the 

ability to find different results due to the use of a random selection process for the 

allocation of the activities in each step. Because of having much flexibility and high-

performance power, this method gives the desired result in every. Hence, it is necessary 

to check the results of several runs to reach the best outcome to calculate the line 

efficiency and smoothness index. 

In contrast, there is a measure to evaluate a new meta-heuristic algorithm to find its 

performance. Hence, generating the same initial solutions for a problem with constant 

parameters such as cycle time, processing times, and precedence graph, seems necessary. 

Therefore, the COMSOAL method has been used only in the second state for improving 

the initial solution. Leaving aside the COMSOAL method to find a way to create an 

initial solution that every time gives a constant solution for the same problem, the Ranked 

Positional Weight (RPW) method Helgeson et al. (1961) is considered. After some 

necessary changes to improve the result, the Revised-RPW method was proposed. 

2.1.1 Algorithm of the RPW for UALBP 

Based on the steps of the RPW method Helgeson et al. (1961), the weight of each task 

must be calculated in both the forward direction and backward direction. The parameters 

used in this method are the following:  

𝑇(𝑆𝑖)  Total time of each station 

𝑇(𝑥)  Time of each task 

CT  Given cycle time  

N  Number of tasks 

M  Number of workstations 

S  Minimum feasible number of workstation 

MCT  Minimum feasible cycle time 

CT*  Modified cycle time 
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To apply a priority for each task, we have used a precedence network calculating task’s 

weights that can be explained as the total of activity time, and times of the various 

succeed or progress, correspondingly. There are two criteria for assigning tasks to 

workstations such as succession and precedence priorities and having free space to 

handle the assigning task to the workstations. In the case of multiple available tasks, the 

one with the highest weight is assigned. Whenever all tasks have been bounded we say 

the assignment is complete. 

In this solution, CT is replaced by a new symbol CT* which is computed as below:  

𝑆 = ∑ 𝑇(𝑥)𝑛
𝑖=1 / 𝐶𝑇  (1) 

If S becomes a non-integer value it should be rounded up. 

𝑀𝐶𝑇 =  ∑ 𝑇(𝑥)/𝑆𝑛
𝑖=1   (2) 

𝐶𝑇∗ = [(𝑀𝐶𝑇 + 𝑆)/2] (3) 

It should be kept in mind that MCT < CT* < CT. As it can be concluded CT can be 

chosen freely in the domain (MCT, CT). However, choosing CT* as CT yields more 

appropriate outputs. To maintain the preferred circumstances, the following relations 

must be satisfied:  

𝑇(𝑆𝑖) =  ∑ 𝑇(𝑥) ≤ 𝐶𝑇        𝑖 = 1, … , 𝑀𝑥∈𝑆𝑖
    (4) 

𝑖𝑓 (𝑥, 𝑦) ∈ 𝑃, 𝑥 ∈  𝑆𝑖 𝑎𝑛𝑑 𝑦 ∈  𝑆𝑗  𝑡ℎ𝑒𝑛 𝑖 ≤ 𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. (5) 

𝑖𝑓 (𝑦, 𝑧) ∈ 𝑃, 𝑦 ∈  𝑆𝑗 𝑎𝑛𝑑 𝑧 ∈  𝑆𝑘  𝑡ℎ𝑒𝑛 𝑘 ≤ 𝑗 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧. (6) 

Equation (4) implies that the total task time belongs to a workstation cannot be more than 

CT. Equation (5) means that if task x is the precedence of task y, its workstation number 

must not be more than the workstation number of task y. Similarly, equation (6) 

guarantees that there is a possibility to assign a task to a workstation after the workstation 

that its predecessor belongs to, because of the U-shaped layout configurations. In the 

following, the steps of the RPW algorithm are explained.  

 Step 1: Computing the least quantity of workstations S, the least possible cycle time 

MCT, and CT* = [(MCT + CT)/2]. 

 Step 2: Adopting a new workstation and computing every work element's weight in 

two ways of forwarding and backward direction. After that, the activities, 

appropriate for assigning, are identified and a candidate list is generated.  

 Step 3: Arrange the weight of work elements in descending order. 

 Step 4: Assign the first activity containing the highest weight, to the first station.  

 Step 5: Calculate the idle time (IT) for station r that has k task with the below 

formula: 
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𝐼𝑇 =   𝐶𝑇∗ −  ∑ 𝑡ᵢᵣ𝑘
𝑖=1   (7) 

 Step 6: Comparing the time of the first none assigned activity that has the highest 

positional weight with the IT of the last work station, Afterwards, assigning the 

activity if its process time is not more than the last work station’s IT. 

 Step 7: Assign an activity to a new workstation if its duration is bigger than the IT 

of the workstation, and go to step 5. 

2.1.2  Revised-RPW Method 

The RPW method proposed by Helgeson et al. (1961), is modified according to the 

flowchart shown in Figure : 
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Figure 1. Flowchart of Revised-RPW 
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2.2.  Initial Solution Improvement until Achieving Final Solution  

To find the optimal solution, the following steps are performed. 

2.2.1. Using a meta-heuristic algorithm for finding some alternative solutions 

For solving ALBPs, according to NP-hardness of such problems, each of the meta-

heuristic algorithm like Genetic Algorithm (Nejad et al., 2018), Tabu Search (Toklu  and 

özcan, 2008), Ant Colony ( López-Ibáñez et al., (2015), Dorigo et al., (2006)), Simulated 

Annealing (Ghadiri Nejad et al., 2018), Local Search (Vizvari et al., 2018), Grey Wolf 

(Vatankhah Barenji et al., (2018), Nadimi-Shahraki et al., (2021)), Memetic algorithm 

(Pereira et al., (2018)), etc. may be used. In this study, first, we utilize the GES algorithm 

to find some alternative solutions. This method applies mutation operator to avoid static 

solutions, in the way that first, several tasks of the initial solution are removed, then by 

using a heuristic technique, the missing tasks are assigned and the solution is completed. 

In Figure 2, we briefly describe all the steps. 

 

Figure 2. Flowchart of Mutation Operator 
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2.2.2. Using a heuristic method for assigning the activities after mutation 

The mutation operator is frequently used in meta-heuristic algorithms, especially in GES 

to find a better solution without any static result in search. In this method, after removing 

some assigned activities from related workstations according to a special pattern, the 

removed tasks are assigned gain to the workstations by a heuristic method. Noted that in 

this step we could not use revised-RPW because of its unique solution in similar cases. 

Considering the simplicity and flexibility of the COMSOAL method (Arcus, 1965), we 

utilized it in this step of the algorithm. The flexibility of this method is because of 

generating different solutions by a random selection process among activities that are 

ready to assign in each step.  

The classical COMSOAL method starts from the first node (activity) and continues with 

the nodes that do not have any predecessor. It assigns the activities to workstations 

considering the idle time of stations. However, in our case, after performing the mutation 

operator, maybe in the middle of the precedence diagram must be assigned. Therefore, 

at first, the algorithm must distinguish which activities have no predecessor or successor 

and after that, it must ignore the assigning of those activities that have previously been 

assigned. To create these changes in the revised algorithm, there is a constraint for 

predecessor and successor activities, which their algorithm are as below: 

 Step 1: Choose the activities without predecessor or successor that are ready to 

assign. 

 Step 2: Finding the possible workstations which activity can be assigned. 

 Step 3: Find the last workstation that contains predecessor activities (MPWS) and 

successor activities (MSWS) of the chosen task. Then, compare them and choose 

the minimum one. 

 Step 4: Control the assumption that the chosen activity’s workstation number must 

be equal or bigger than the workstation number that we described in step3. 

 Step 5: Remove the assignment of the chosen activity, if the assumption of step 4 

has been violated. 

Figure 3 illustrates the mentioned steps in a flowchart format. In this flowchart, we 

considered APWS as an appropriate workstation for assigning activities that are ready to 

be assigned. 
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1 Figure 2.2.2. Flowchart of Revised-COMSOAL 

2.3.  Using a Method to Select the Best Solution in Every Step 

After changing the solution method in the proposed algorithm and improving it in every 

step, in addition to the chosen result of the previous step, two new solutions are 

generated. To find the best result for producing the next solution, it is necessary to 

compare all three solutions in every step. In this regard, a method based on the 

smoothness index (SI), which is explained later, is considered as the selection operator. 

Figure 4 describes the improvement of the initial solution. 
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2 Figure 4. Flowchart of the proposed algorithm 

3. Computational Results 

3.1.  Simulation Setup and Performance Metrics  

In this chapter, the results of the proposed methods are compared with some well-known 

problems and the solutions for the considered test problems are compared with the best 

solutions that are already obtained by Hwang et al. (2008). The needed data to examine 
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the mentioned methods and to compare the results have been acquired from their study. 

All procedures were implemented in MATLAB 2013a software and executed on an 

Intel(R) Pentium(R) Dual CPU computer with 2.00GHz of CPU speed and 4.00 GB of 

RAM. 

For the performance measurement of the proposed algorithm, the results of using the 

selection operator method are compared by solving well-known problems. The proposed 

algorithm has several parts and the initial solution may be the optimal solution. The 

results reveal that by the using proposed method, the initial solution will be improved to 

the optimal or a near-optimal solution in all the test problems. The perfect balance of an 

assembly line is attained by the combination of work elements in a way that the total 

busy time of workstations will be the same as cycle time. Since a perfect balance can 

rarely happen, some other metrics are used in UALBP type-1 to compare different 

combinations. These metrics can evaluate the performance and efficiency of the balance. 

Several workstations (NWS): Having less NWS means more proper task dispatch, 

which leads to a more efficient balance. Less NWS can save the budgets and working 

area.  

Line Efficiency (LE): LE is yield by summing up all workstation’s time to the CT 

divided by the total workstation number. It reflects the percentage of the line's usage. 

Higher values of LE is more desirable out of an ideal value of one hundred. To maximize 

LE the workstation number must be minimized. LE is calculated by equation (8).  

𝐿𝐸 =  (
∑ 𝑇(𝑆𝑖)

𝑚
𝑖=1

𝑀 ∗ 𝐶𝑇
) ∗ 100 (8) 

where 𝑇(𝑆𝑖) is the total time of tasks that there are in the workstation i and calculated by 

equation (9). 

𝑇(𝑆𝑖) =  ∑ 𝑇𝑗𝑗∈𝑆𝑖
   (9) 

Smoothness Index (SI): An important performance variable in a production line. SI 

indicates the total time when a workstation is idle. It usually happens when an improper 

assignment is done. The ideal value for SI is zero, which shows a perfect balance. The 

minimum value of SI can be reached when the differences of the workstations’ workloads 

are decreased as much as possible. SI can be computed by equation (10).  

𝑆𝐼 =  √∑ (𝑇(𝑆𝑚𝑎𝑥)−𝑇(𝑆𝑖))
2𝑚

𝑖=1

𝑚
  (10) 

where 𝑇(𝑆𝑚𝑎𝑥) is the maximum value of 𝑇(𝑆𝑖). 

This non-linear function given by equation (10) speeds up the transmission of activities 

from low to the high-pressure workstation. Therefore, the chance of getting an empty 

workstation in the next solutions will be increased.  
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Variation (V): This is another performance variable of a production line by considering 

the utilization of each workstation. Similar to the SI, the minimum amount of V can be 

accomplished by decreasing the difference of workloads among workstations. V is 

calculated by equation (11). 

𝑉 =  √
∑ (𝑈𝑖− 𝑎𝑣𝑒𝑟)2𝑚

𝑖=1

𝑚
  (11) 

where 𝑎𝑣𝑒𝑟 is an average utilization for all workstations, which is calculated by equation 

(12). Moreover, the utilization of the workstation, Si, is calculated by equation (13).  

𝑎𝑣𝑒𝑟 =  ∑ 𝑈𝑖 𝑚⁄
𝑚

𝑖=1
 (12) 

𝑈𝑖 = 𝑇(𝑆𝑖)/𝑇(𝑆𝑚𝑎𝑥) (13) 

3.2.  Results Obtained by the Proposed Method 

To find the performance level of the proposed method, different types of test problems 

are considered. For each problem, the number of the tasks, the cycle time, the optimum 

number of workstations found by Hwang et al.  (2008),  the number of workstations 

found by the RPW method, Revised-RPW method, and the proposed GES are reported.  

3 Table 1.Number of workstations 

Problem 
Number 

of tasks 

Cycle 

time 

The optimum 

number of 

workstations 

RPW 

method 

Revised-RPW 

method 

GES with 

Revised-RPW 

method 

Mitchell 21 
14 

21 

8 

5 

9 

6 

8 

6 

8 

5 

Heskia 28 
138 

205 

8 

5 

10 

6 

8 

6 

8 

5 

Sawyer 30 
27 

33 

13 

10 

15 

13 

13 

11 

13 

10 

Tonge 70 
176 

364 

21 

10 

23 

11 

21 

10 

21 

10 

Arcus 1 83 
6842 

8412 

12 

10 

13 

10 

12 

10 

12 

10 

Arcus 2 111 
5755 

10743 

27 

15 

29 

17 

27 

15 

27 

15 

The results in Table 1 show that in all of the considered test problems, the optimum 

number of workstations obtained by the proposed GES method is the optimal answer. 

3.3.  Comparing with a GA-Based Method 

In Table 2, the test problems with the same cycle time mentioned in Table 1 are 

considered again. In this table, for the GES methods, two indexes such as LE, and V are 

calculated and compared to the obtained solutions proposed GA by Hwang et al. (2008).  
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Table 2. Comparisons with the GA algorithm 

Problem 
Number 

of tasks 

Cycle 

time 

GES with Revised-RPW 

method 

 Multi-objective GA 

Fitness function E 

No. of 

stations 
LE VI 

No. of 

stations 
LE VI 

Mitchell 21 
14 

21 

8 

5 

93.75 

100.0 

0.023 

0.000 

 8 

5 

93.75 

100.0 

0.055 

0.000 

Heskia 28 
138 

205 

8 

5 

92.75 

99.90 

0.006 

0.001 

 8 

5 

92.70 

99.90 

0.112 

0.001 

Sawyer 30 
27 

33 

13 

10 

92.31 

98.18 

0.023 

0.014 

 13 

10 

92.31 

98.18 

0.071 

0.024 

Tonge 70 
176 

364 

21 

10 

94.97 

96.43 

0.042 

0.006 

 21 

10 

95.00 

96.40 

0.043 

0.023 

Arcus 1 83 
6842 

8412 

12 

10 

92.26 

90.22 

0.017 

0.020 

 12 

10 

92.20 

90.00 

0.097 

0.123 

Arcus 2 111 
5755 

10743 

27 

15 

96.79 

93.38 

0.019 

0.017 

 27 

15 

96.79 

93.38 

0.036 

0.063 

According to the above table, the results found by the proposed GES method is better or 

the same as the reported solutions by the genetic algorithm in the literature.  

4. Conclusion 

In this research, the assembly line balancing problem considering reducing the number 

of workstations with a given cycle time is studied. Primarily, a mathematical model and 

then two new methods including an exact algorithm and a hybrid grouping meta-heuristic 

algorithm were proposed. The former one was to find an initial solution and the latter 

one was to improve the initial solution to achieve the best solution, by using a method 

for selection operator to solve U-shaped assembly line balancing problems. The proposed 

algorithm is based on the grouping evolution strategies method, while the most useful 

meta-heuristic algorithm that already exists, is based on the genetic algorithm. Moreover, 

to increase the performance of the proposed procedure, a modified version of the 

COMSOAL method was used. The performance of the proposed method was compared 

to one of the proposed algorithms from the literature. The results illustrated that the 

proposed algorithm is one of the most efficient algorithms to solve such problems.  

Various topics may be considered for possible future studies. For instance, considering 

pre-assignment of some of the given tasks to especial workstations, and similarly, 

limitation to assign two or more tasks in the same workstations. Additionally, 

minimization of cycle time may be considered as the second or simultaneous objective 

function, which is the other important objective of assembly balancing problems to 

decrease the working hours. Using a goal programming approach to optimize such 

problems, or using other meth-heuristic methods like Particle Swarm Optimization, Grey 

wolf optimization, neural network, etc. may be of interest to researchers in the future. 

Finally, considering non-deterministic processing time with any of the mentioned 

objective function may be a good topic to be considered.  
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