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Abstract Being a follow-up study, this paper configures soft decision-making (SDM) 

methods (2017-2019), having been constructed with soft sets, soft matrices, and their 

fuzzy hybrid versions, to operate them in fuzzy parameterized fuzzy soft (fpfs) matrices 

space faithfully to the original. It then analyses the decision-making performances of the 

configured methods herein by using five test cases. Afterwards, it applies the methods, 

producing valid ranking order according to all the test cases, to the ranking of seven 

known noise-removal filters. This paper completes the configurations that allow the 

available methods (1999-2019) to operate in the fpfs-matrices space. Finally, the need 

for further research studies is discussed. 
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1. Introduction 

The present paper is a follow-up study of (Enginoğlu and  Memiş, 2018a; Aydın and 

Enginoğlu, 2019; Enginoğlu and Öngel, 2020; Aydın and Enginoğlu, 2020; Enginoğlu 

and Aydın, 2021). The studies have configured the available soft decision-making 

(SDM) methods having been proposed between 1999-2016 and having been introduced 

by soft sets (SS) (Molodtsov, 1999; Çağman and Enginoğlu, 2010b), fuzzy soft sets 

(FSS) (Maji et al., 2001; Çağman et al., 2011b), fuzzy parameterized soft sets (FPSS) 

(Çağman et al., 2011a), fuzzy parameterized fuzzy soft sets (FPFSS or fpfs-sets) 

(Çağman et al., 2010), soft matrices (SM) (Çağman and Enginoğlu, 2010a), and fuzzy 

soft matrices (FSM) (Çağman and Enginoğlu, 2012). For the relationships between these 

concepts and further information, see (Enginoğlu et al., 2021). This paper completes the 

configurations that allow the available methods (1999-2019) (Guan, 2017; Zou et al., 

2019; Alcantud and Mathew, 2017; Eraslan and Çağman, 2017; Liu et al., 2017; Taş et 

al., 2017; Alcantud and Torrecilles, 2018; Karaca and Taş, 2018; Liu and Liu, 2018; Pal, 
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2018; Porchelvi and Snekaa, 2018; Xiao, 2018; Aggarwal, 2019; Ma et al., 2019; 

Sandhiya and Selvakumari, 2019a; Sandhiya and Selvakumari, 2019b; Sharma and 

Singh, 2019; Wang and Qin, 2019; Zhang and  Zhan, 2019; Riaz et al., 2018; Riaz and 

Hashmi, 2017; Riaz and Hashmi, 2018; Atagün et al., 2018; Mondal and De, 2018; Neog 

and Dutta, 2018; Kamacı et al., 2018) to operate in the fpfs-matrices space (Enginoğlu 

and Çaǧman, 2020). 

The following tables provide some information about the considered SDM methods 

herein. Table 1, 2, and 3 show the abbreviated forms of the configured SDM methods 

herein employing single, double, and multiple fpfs-matrices and their spaces in which 

they have been first put forward, respectively.  

Table 1. SDM methods employing single fpfs-matrix 

Configured SDM Methods Original Spaces of the Configured SDM Methods 
Descriptions 

FPFSM FPFSS FPSS FSM FSS SM SS 

G17(R)      ✓ Guan 2017 

LQP17(w)    ✓   Liu, Qin, Pei 2017 

TOD17    ✓   Taş, Özgür, Demir 2017 

KT18(R)      ✓ Karaca, Taş 2018 

KT18/2    ✓   Karaca, Taş 2018 

LL18(λ)    ✓   Liu, Liu 2018 

X18    ✓   Xiao 2018 

A19(R, w, λ1, λ2, λ3, λ4, λ5)      ✓ Aggarwal 2019 

MLQFG19    ✓   Ma, Li, Qin, Fei, Gong 2019 

WQ19    ✓   Wang, Qin 2019 

ZZ19(λ, γ)    ✓   Zhang, Zhan 2019 

 

Table 2. SDM methods employing double fpfs-matrices  

Configured SDM 

Methods 
Original Spaces of the Configured SDM Methods 

Descriptions 

FPFSM FPFSS FPSS FSM FSS SM SS 

RH17 ✓      Riaz, Hashmi 2017 

AKO18a     ✓  Atagün, Kamacı, Oktay 2018 

AKO18o     ✓  Atagün, Kamacı, Oktay 2018 

RH18 ✓      Riaz, Hashmi 2018 

X18/2  
 

 

 

 

 ✓   Xiao 2018 
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Table 3. SDM methods employing multiple fpfs-matrices 

Configured SDM Methods Original Spaces of the Configured SDM Methods 
Descriptions 

FPFSM FPFSS FPSS FSM FSS SM SS 

AM17(R1, R2,…, Rt)    ✓   Alcantud, Mathew 2017 

AM17/2(R1, R2,…, Rt)    ✓   Alcantud, Mathew 2017 

AM17/3(λ, R1, R2,…, Rt)    ✓   Alcantud, Mathew 2017 

AM17/4(λ, R1, R2,…, Rt)    ✓   Alcantud, Mathew 2017 

AM17/5(λ, R1, R2,…, Rt)    ✓   Alcantud, Mathew 2017 

AM17/6(λ, R1, R2,…, Rt)    ✓   Alcantud, Mathew 2017 

EC17(λ)    ✓   Eraslan, Çağman 2017 

AT18(λ)    ✓   Alcantud, Torrecillas 2018 

KAS18aa     ✓  Kamacı, Atagün, Sönmezoğlu 2018 

KAS18aa/2     ✓  Kamacı, Atagün, Sönmezoğlu 2018 

MD18    ✓   Mondal, De 2018 

ND18    ✓   Neog, Dutta 2018 

P18    ✓   Pal 2018 

PS18    ✓   Porchelvi, Snekaa 2018 

RHF18 ✓      Riaz, Hashmi, Farooq 2018 

A19/2(R)    ✓   Aggarwal 2019 

SS19    ✓   Sandkia, Selvakumari 2019 

SS19/2    ✓   Sandkia, Selvakumari 2019 

SS19/3    ✓   Sandkia, Selvakumari 2019 

SS19/4    ✓   Sandkia, Selvakumari 2019 

SS19/5(w)    ✓   Sharma, Singh 2019 

ZCW19(δ, θ)      ✓ Zou, Chen, Wang 2019 

Section 2 presents some of the basic notions of fpfs-matrices to be required in the 

following sections. Section 3 configures the SDM methods provided in (Guan, 2017; 

Zou et al., 2019; Alcantud and Mathew, 2017; Eraslan and Çağman, 2017; Liu et al., 

2017; Taş et al., 2017; Alcantud and Torrecilles, 2018; Karaca and Taş, 2018; Liu and 

Liu, 2018; Pal, 2018; Porchelvi and Snekaa, 2018; Xiao, 2018; Aggarwal, 2019; Ma et 

al., 2019; Sandhiya and Selvakumari, 2019a; Sandhiya and Selvakumari, 2019b; Sharma 

and Singh, 2019; Wang and Qin, 2019; Zhang and Zhan, 2019; Riaz et al., 2018; Riaz 

and Hashmi, 2017; Riaz and Hashmi, 2018; Atagün et al., 2018; Mondal and  De, 2018; 

Neog and Dutta, 2018; Kamacı et al., 2018) to operate in the fpfs-matrices space 

(Enginoğlu and Çaǧman, 2020). Section 4 determines the methods producing a valid 

ranking order in all the test cases provided in (Enginoğlu et al., 2021) among the 

configured in the previous section. Section 5 applies the methods which accomplish all 

the tests to a performance-based value assignment (PVA) problem. Final Section 

discusses the need for further research studies. 
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2. Preliminaries 

In this section, we present the concept of fpfs-matrices (Enginoğlu and Çaǧman, 2020) 

to be required in the next sections. 

Definition 2.1. (Zadeh, 1965) Let 𝐸 be a parameter set and 𝜇 be a function from 𝐸 to 

[0,1]. Then, the set  { 𝑥 
𝜇(𝑥) | 𝑥 ∈ 𝐸}, being the graphic of 𝜇, is called a fuzzy set over 𝐸. 

Besides, 𝐹(𝐸) denotes the set of all the fuzzy sets over 𝐸. 

Definition 2.2. (Çağman et al., 2010) Let 𝑈 be a universal set, 𝜇 ∈ 𝐹(𝐸), and 𝛼 be a 

function from 𝜇 to 𝐹(𝑈). Then, the set {( 𝑥 
𝜇(𝑥) , 𝛼( 𝑥 

𝜇(𝑥) )) | 𝑥 ∈ 𝐸}, being the graphic of 

𝛼, is called a fuzzy parameterized fuzzy soft set (fpfs-set) parameterized via 𝐸 over 𝑈 (or 

briefly over 𝑈). 

In the present paper, the set of all the fpfs-sets over 𝑈 is denoted by 𝐹𝑃𝐹𝑆𝐸(𝑈). In 

𝐹𝑃𝐹𝑆𝐸(𝑈), since the graph(𝛼) and 𝛼 generate each other uniquely, the notations are 

interchangeable. Therefore, as long as it causes no confusion, we denote an fpfs-set 

graph(𝛼) by 𝛼. 

Example 2.2. Let 𝐸 = {𝑥1, 𝑥2, 𝑥3} and 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4}. Then, 

𝛼 = {( 𝑥1 
0.7 , { 𝑢2 

0.1 , 𝑢3 
0.2 , 𝑢4 

0.9 }), ( 𝑥2 
0 , { 𝑢1 

0.2 , 𝑢2 
0.8 , 𝑢4 

0.5 }), ( 𝑥3 
1 , { 𝑢1 

0.3 , 𝑢3 
0.3 , 𝑢4 

1 })} 

is an fpfs-set over 𝑈. 

Definition 2.3. (Enginoğlu and Çaǧman, 2020) Let 𝛼 ∈ 𝐹𝑃𝐹𝑆𝐸(𝑈). Then, [𝑎𝑖𝑗] is called 

fpfs-matrix of 𝛼 and is defined by 

[𝑎𝑖𝑗] =

[
 
 
 
 
 
 
 
𝑎01 𝑎02 𝑎03 … 𝑎0𝑛 …

𝑎11 𝑎12 𝑎13 … 𝑎1𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑚1 𝑎𝑚2 𝑎𝑚3 … 𝑎𝑚𝑛 …

⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ]
 
 
 
 
 
 
 

 

such that for 𝑖 ∈ {0,1,2,⋯ } and 𝑗 ∈ {1,2,⋯ }, 

𝑎𝑖𝑗 ≔ {

𝜇(𝑥𝑗), 𝑖 = 0

𝛼 ( 𝑥𝑗 
𝜇(𝑥𝑗) ) (𝑢𝑖), 𝑖 ≠ 0

 

Here, if |𝑈| = 𝑚 − 1 and |𝐸| = 𝑛, then [𝑎𝑖𝑗] has order 𝑚 × 𝑛. 

From now on, the set of all the fpfs-matrices parameterized via 𝐸 over 𝑈 is denoted by 

𝐹𝑃𝐹𝑆𝐸[𝑈]. 
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Example 2.4. The fpfs-matrix of 𝛼 provided in Example 2.2 is as follows: 

[𝑎𝑖𝑗] =

[
 
 
 
 
 
0.7 0 1

0 0.2 0.3

0.1 0.8 0

0.2 0 0.3

0.9 0.5 1 ]
 
 
 
 
 

 

Definition 2.5. (Enginoğlu and Çaǧman, 2020) Let [𝑎𝑖𝑗]𝑚×𝑛1
∈ 𝐹𝑃𝐹𝑆𝐸1[𝑈], 

[𝑏𝑖𝑘]𝑚×𝑛2 ∈ 𝐹𝑃𝐹𝑆𝐸2[𝑈], and [𝑐𝑖𝑝]𝑚×𝑛1𝑛2
∈ 𝐹𝑃𝐹𝑆𝐸1×𝐸2[𝑈] such that 𝑝 = 𝑛2(𝑗 − 1) +

𝑘. For all 𝑖 and 𝑝, if 𝑐𝑖𝑝 ≔ min{𝑎𝑖𝑗 , 𝑏𝑖𝑘}, then [𝑐𝑖𝑝] is called AND-product of [𝑎𝑖𝑗] and 

[𝑏𝑖𝑘] and is denoted by [𝑎𝑖𝑗] ∧ [𝑏𝑖𝑘]. For all 𝑖 and 𝑝, if 𝑐𝑖𝑝 ≔ max{𝑎𝑖𝑗 , 𝑏𝑖𝑘}, then [𝑐𝑖𝑝] is 

called OR-product of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] and is denoted by [𝑎𝑖𝑗] ∨ [𝑏𝑖𝑘]. 

Definition 2.6. Let [𝑠𝑖1] ∈ 𝑀(𝑚−1)×1(ℝ) such that  𝑚 ≥ 2. Then, normalisation [𝑠̂𝑖1] of 

[𝑠𝑖1] is defined by 

𝑠̂𝑖1 ∶= {

𝑠𝑖1 −min
𝑘
𝑠𝑘1

max
𝑘
𝑠𝑘1 −min

𝑘
𝑠𝑘1

, max
𝑘
𝑠𝑘1 ≠ min

𝑘
𝑠𝑘1

1, max
𝑘
𝑠𝑘1 = min

𝑘
𝑠𝑘1

 

3. Configurations of SDM Methods 

This section configures the SDM methods constructed by soft sets (Guan, 2017; Zou et 

al., 2019; Karaca and Taş, 2018; Aggarwal, 2019), fuzzy soft sets (Alcantud and  

Mathew, 2017; Eraslan and Çağman, 2017; Liu et al., 2017; Taş et al., 2017; Alcantud 

and Torrecilles, 2018; Karaca and Taş, 2018; Liu and Liu, 2018; Pal, 2018; Porchelvi 

and Snekaa, 2018; Xiao, 2018; Aggarwal, 2019; Ma et al., 2019; Sandhiya and 

Selvakumari, 2019a; Sandhiya and Selvakumari, 2019b; Sharma and Singh, 2019; Wang 

and Qin, 2019; Zhang, and Zhan, 2019; Mondal and De, 2018; Neog and Dutta, 2018), 

fpfs-sets (Riaz et al., 2018; Riaz and Hashmi, 2017; Riaz and Hashmi, 2018), and soft 

matrices (Atagün  et al., 2018; Mondal and De, 2018; Neog and Dutta, 2018; Kamacı et 

al., 2018). From now on, 𝐼𝑛 = {1,2,⋯ , 𝑛} and 𝐼𝑛
∗ = {0,1,2,⋯ , 𝑛}. 

Alcantud and Mathew (2017) have proposed six SDM methods based on fuzzy soft sets 

by using the arithmetic mean, geometric mean, Zadeh’s fuzzy complement, Sugeno class 

of fuzzy complements, and Yager class of fuzzy complements (sic. Klir and Yuan, 1995). 

We configure the proposed methods therein as follows: 

Algorithm 3.1. AM17(𝑹𝟏, 𝑹𝟐, … , 𝑹𝒕) 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗1
1 ]

𝑚×𝑛1
, [𝑎𝑖𝑗2

2 ]
𝑚×𝑛2

, …, [𝑎𝑖𝑗𝑡
𝑡 ]

𝑚×𝑛𝑡
 

Step 2. Determine indices set of undesirable parameters 𝑅𝑘 ⊆ 𝐼𝑛𝑘 , for all 𝑘 ∈ 𝐼𝑡 



46                                        Ann Opt The Prac (AOTP), 2021, Vol. 4, No. 1 

 

© 2021 The Authors. 

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran 

Step 3. Obtain [𝑏𝑖𝑗1
1 ]

𝑚×𝑛1
, [𝑏𝑖𝑗2

2 ]
𝑚×𝑛2

, …, [𝑏𝑖𝑗𝑡
𝑡 ]

𝑚×𝑛𝑡
 defined by  

𝑏𝑖𝑗𝑘
𝑘 ≔ {

1 − 𝑎𝑖𝑗𝑘
𝑘 , 𝑗𝑘 ∈ 𝑅𝑘

𝑎𝑖𝑗𝑘
𝑘 , 𝑗𝑘 ∉ 𝑅𝑘

 

such that 𝑖 ∈ 𝐼𝑚−1
∗ , 𝑗𝑘 ∈ 𝐼𝑛𝑘, and 𝑘 ∈ 𝐼𝑡 

Step 4. Obtain [𝑐𝑖𝑘]𝑚×𝑡 defined by 

𝑐𝑖𝑘 ≔
1

|𝐼𝑛𝑘|
∑ 𝑏𝑖𝑗

𝑘

|𝐼𝑛𝑘|

𝑗=1

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑘 ∈ 𝐼𝑡 

Step 5. Apply Step 3 and 4 of A16 (Enginoğlu et al., 2021) to [𝑐𝑖𝑘] 

Algorithm 3.2. AM17/2(𝑹𝟏, 𝑹𝟐, … , 𝑹𝒕) 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗1
1 ]

𝑚×𝑛1
, [𝑎𝑖𝑗2

2 ]
𝑚×𝑛2

, …, [𝑎𝑖𝑗𝑡
𝑡 ]

𝑚×𝑛𝑡
 

Step 2. Determine indices set of undesirable parameters 𝑅𝑘 ⊆ 𝐼𝑛𝑘 , for all 𝑘 ∈ 𝐼𝑡 

Step 3. Obtain [𝑏𝑖𝑗1
1 ]

𝑚×𝑛1
, [𝑏𝑖𝑗2

2 ]
𝑚×𝑛2

, …, [𝑏𝑖𝑗𝑡
𝑡 ]

𝑚×𝑛𝑡
 defined by  

𝑏𝑖𝑗𝑘
𝑘 ≔ {

1 − 𝑎𝑖𝑗𝑘
𝑘 , 𝑗𝑘 ∈ 𝑅𝑘

𝑎𝑖𝑗𝑘
𝑘 , 𝑗𝑘 ∉ 𝑅𝑘

 

such that 𝑖 ∈ 𝐼𝑚−1
∗ , 𝑗𝑘 ∈ 𝐼𝑛𝑘, and 𝑘 ∈ 𝐼𝑡 

Step 4. Obtain [𝑐𝑖𝑘]𝑚×𝑡 defined by 

𝑐𝑖𝑘 ≔ (∏𝑏𝑖𝑗
𝑘

|𝐼𝑛𝑘|

𝑗=1

)

1

|𝐼𝑛𝑘|

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑘 ∈ 𝐼𝑡 

Step 5. Apply Step 3 and 4 of A16 (Enginoğlu et al., 2021) to [𝑐𝑖𝑘] 

Algorithm 3.3. AM17/3(𝝀, 𝑹𝟏, 𝑹𝟐, … , 𝑹𝒕) 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗1
1 ]

𝑚×𝑛1
, [𝑎𝑖𝑗2

2 ]
𝑚×𝑛2

, …, [𝑎𝑖𝑗𝑡
𝑡 ]

𝑚×𝑛𝑡
 

Step 2. Determine indices set of undesirable parameters 𝑅𝑘 ⊆ 𝐼𝑛𝑘 , for all 𝑘 ∈ 𝐼𝑡 
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Step 3. For 𝜆 ∈ (−1,∞), obtain [𝑏𝑖𝑗1
1 ]

𝑚×𝑛1
, [𝑏𝑖𝑗2

2 ]
𝑚×𝑛2

, …, [𝑏𝑖𝑗𝑡
𝑡 ]

𝑚×𝑛𝑡
 defined by  

𝑏𝑖𝑗𝑘
𝑘 ≔ {

1 − 𝑎𝑖𝑗𝑘
𝑘

1 + 𝜆𝑎𝑖𝑗𝑘
𝑘 , 𝑗𝑘 ∈ 𝑅𝑘

𝑎𝑖𝑗𝑘
𝑘 , 𝑗𝑘 ∉ 𝑅𝑘

 

such that 𝑖 ∈ 𝐼𝑚−1
∗ , 𝑗𝑘 ∈ 𝐼𝑛𝑘, and 𝑘 ∈ 𝐼𝑡 

Step 4. Obtain [𝑐𝑖𝑘]𝑚×𝑡 defined by 

𝑐𝑖𝑘 ≔
1

|𝐼𝑛𝑘|
∑ 𝑏𝑖𝑗

𝑘

|𝐼𝑛𝑘|

𝑗=1

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑘 ∈ 𝐼𝑡 

Step 5. Apply Step 3 and 4 of A16 (Enginoğlu et al., 2021) to [𝑐𝑖𝑘] 

Algorithm 3.4. AM17/4(𝝀, 𝑹𝟏, 𝑹𝟐, … , 𝑹𝒕) 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗1
1 ]

𝑚×𝑛1
, [𝑎𝑖𝑗2

2 ]
𝑚×𝑛2

, …, [𝑎𝑖𝑗𝑡
𝑡 ]

𝑚×𝑛𝑡
 

Step 2. Determine indices set of undesirable parameters 𝑅𝑘 ⊆ 𝐼𝑛𝑘 , for all 𝑘 ∈ 𝐼𝑡 

Step 3. For 𝜆 ∈ (−1,∞), obtain [𝑏𝑖𝑗1
1 ]

𝑚×𝑛1
, [𝑏𝑖𝑗2

2 ]
𝑚×𝑛2

, …, [𝑏𝑖𝑗𝑡
𝑡 ]

𝑚×𝑛𝑡
 defined by  

𝑏𝑖𝑗𝑘
𝑘 ≔ {

1 − 𝑎𝑖𝑗𝑘
𝑘

1 + 𝜆𝑎𝑖𝑗𝑘
𝑘 , 𝑗𝑘 ∈ 𝑅𝑘

𝑎𝑖𝑗𝑘
𝑘 , 𝑗𝑘 ∉ 𝑅𝑘

 

such that 𝑖 ∈ 𝐼𝑚−1
∗ , 𝑗𝑘 ∈ 𝐼𝑛𝑘, and 𝑘 ∈ 𝐼𝑡 

Step 4. Obtain [𝑐𝑖𝑘]𝑚×𝑡 defined by 

𝑐𝑖𝑘 ≔ (∏𝑏𝑖𝑗
𝑘

|𝐼𝑛𝑘|

𝑗=1

)

1

|𝐼𝑛𝑘|

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑘 ∈ 𝐼𝑡 

Step 5. Apply Step 3 and 4 of A16 (Enginoğlu et al., 2021) to [𝑐𝑖𝑘] 

Algorithm 3.5. AM17/5(𝝀, 𝑹𝟏, 𝑹𝟐, … , 𝑹𝒕) 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗1
1 ]

𝑚×𝑛1
, [𝑎𝑖𝑗2

2 ]
𝑚×𝑛2

, …, [𝑎𝑖𝑗𝑡
𝑡 ]

𝑚×𝑛𝑡
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Step 2. Determine indices set of undesirable parameters 𝑅𝑘 ⊆ 𝐼𝑛𝑘 , for all 𝑘 ∈ 𝐼𝑡 

Step 3. For 𝜆 ∈ (0,∞), obtain [𝑏𝑖𝑗1
1 ]

𝑚×𝑛1
, [𝑏𝑖𝑗2

2 ]
𝑚×𝑛2

, …, [𝑏𝑖𝑗𝑡
𝑡 ]

𝑚×𝑛𝑡
 defined by  

𝑏𝑖𝑗𝑘
𝑘 ≔ {(1 − (𝑎𝑖𝑗𝑘

𝑘 )
𝜆
)

1
𝜆
, 𝑗𝑘 ∈ 𝑅𝑘

𝑎𝑖𝑗𝑘
𝑘 , 𝑗𝑘 ∉ 𝑅𝑘

 

such that 𝑖 ∈ 𝐼𝑚−1
∗ , 𝑗𝑘 ∈ 𝐼𝑛𝑘, and 𝑘 ∈ 𝐼𝑡 

Step 4. Obtain [𝑐𝑖𝑘]𝑚×𝑡 defined by 

𝑐𝑖𝑘 ≔
1

|𝐼𝑛𝑘|
∑ 𝑏𝑖𝑗

𝑘

|𝐼𝑛𝑘|

𝑗=1

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑘 ∈ 𝐼𝑡 

Step 5. Apply Step 3 and 4 of A16 (Enginoğlu et al., 2021) to [𝑐𝑖𝑘] 

Algorithm 3.6. AM17/6(𝝀, 𝑹𝟏, 𝑹𝟐, … , 𝑹𝒕) 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗1
1 ]

𝑚×𝑛1
, [𝑎𝑖𝑗2

2 ]
𝑚×𝑛2

, …, [𝑎𝑖𝑗𝑡
𝑡 ]

𝑚×𝑛𝑡
 

Step 2. Determine indices set of undesirable parameters 𝑅𝑘 ⊆ 𝐼𝑛𝑘 , for all 𝑘 ∈ 𝐼𝑡 

Step 3. For 𝜆 ∈ (0,∞), obtain [𝑏𝑖𝑗1
1 ]

𝑚×𝑛1
, [𝑏𝑖𝑗2

2 ]
𝑚×𝑛2

, …, [𝑏𝑖𝑗𝑡
𝑡 ]

𝑚×𝑛𝑡
 defined by  

𝑏𝑖𝑗𝑘
𝑘 ≔ {(1 − (𝑎𝑖𝑗𝑘

𝑘 )
𝜆
)

1
𝜆
, 𝑗𝑘 ∈ 𝑅𝑘

𝑎𝑖𝑗𝑘
𝑘 , 𝑗𝑘 ∉ 𝑅𝑘

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗𝑘 ∈ 𝐼𝑛𝑘, and 𝑘 ∈ 𝐼𝑡 

Step 4. Obtain [𝑐𝑖𝑘]𝑚×𝑡 defined by 

𝑐𝑖𝑘 ≔ (∏𝑏𝑖𝑗
𝑘

|𝐼𝑛𝑘|

𝑗=1

)

1

|𝐼𝑛𝑘|

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑘 ∈ 𝐼𝑡 

Step 5. Apply Step 3 and 4 of A16 (Enginoğlu et al., 2021) to [𝑐𝑖𝑘] 
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In (Eraslan and  Çağman, 2017), the authors have introduced an SDM method via fuzzy 

soft sets by combining TOPSIS and Grey Relational Analysis. We configure the 

proposed method therein as follows: 

Algorithm 3.7. EC17(𝝀) 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

, …, [𝑎𝑖𝑗
𝑡 ]

𝑚×𝑛
  

Step 2. Obtain [𝑏𝑘𝑗]𝑡×𝑛 defined by 𝑏𝑘𝑗 ≔ 𝑎0𝑗
𝑘  such that 𝑘 ∈ 𝐼𝑡 and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑐𝑘𝑗]𝑡×𝑛 defined by 

𝑐𝑘𝑗 ≔

{
  
 

  
 𝑏𝑘𝑗

√∑ 𝑏𝑙𝑗
2𝑡

𝑙=1

, ∑𝑏𝑙𝑗
2

𝑡

𝑙=1

≠ 0

1

√𝑡
, ∑𝑏𝑙𝑗

2

𝑡

𝑙=1

= 0

 

such that 𝑘 ∈ 𝐼𝑡 and 𝑗 ∈ 𝐼𝑛 

Step 4. Obtain [𝑑𝑗1]𝑛×1 defined by  

𝑑𝑗1 ≔
1

𝑡
∑𝑐𝑘𝑗

𝑡

𝑘=1

,    𝑗 ∈ 𝐼𝑛 

Step 5. Obtain [𝑒𝑗1]𝑛×1 defined by 

𝑒𝑗1 ≔
𝑑𝑗1

∑ 𝑑𝑙1
𝑛
𝑙=1

,    𝑗 ∈ 𝐼𝑛 

Step 6. Obtain [𝑓𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑓𝑖𝑗 ≔
1

𝑡
∑𝑎𝑖𝑗

𝑘

𝑡

𝑘=1

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 7. Obtain [𝑔𝑖𝑗](𝑚−1)×𝑛 defined by 𝑔𝑖𝑗 ≔ 𝑒𝑗1𝑓𝑖𝑗 such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 8. Obtain [𝑔1𝑗
+ ]

1×𝑛
 and [𝑔1𝑗

− ]
1×𝑛

 defined by 

𝑔1𝑗
+ ≔ max

𝑖∈𝐼𝑚−1
{𝑔𝑖𝑗}    and   𝑔1𝑗

− ≔ min
𝑖∈𝐼𝑚−1

{𝑔𝑖𝑗} ,    𝑗 ∈ 𝐼𝑛 

Step 9. For 𝜆 ∈ [0,1], obtain [ℎ𝑖𝑗
+ ]

(𝑚−1)×𝑛
 and [ℎ𝑖𝑗

− ]
(𝑚−1)×𝑛

 defined by 
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ℎ𝑖𝑗
+ ≔

{
 
 

 
 
min
𝑘∈𝐼𝑚−1

min
𝑙∈𝐼𝑛

{|𝑔1𝑙
+ − 𝑔𝑘𝑙|} + 𝜆 max

𝑘∈𝐼𝑚−1
max
𝑙∈𝐼𝑛

{|𝑔1𝑙
+ − 𝑔𝑘𝑙|}

|𝑔1𝑗
+ − 𝑔𝑖𝑗| + 𝜆 max

𝑘∈𝐼𝑚−1
max
𝑙∈𝐼𝑛

{|𝑔1𝑙
+ − 𝑔𝑘𝑙|}

, max
𝑘∈𝐼𝑚−1

max
𝑙∈𝐼𝑛

{|𝑔1𝑙
+ − 𝑔𝑘𝑙|} ≠ 0

1, max
𝑘∈𝐼𝑚−1

max
𝑙∈𝐼𝑛

{|𝑔1𝑙
+ − 𝑔𝑘𝑙|} = 0

 

and 

ℎ𝑖𝑗
− ≔

{
 
 

 
 
min
𝑘∈𝐼𝑚−1

min
𝑙∈𝐼𝑛

{|𝑔1𝑙
− − 𝑔𝑘𝑙|} + 𝜆 max

𝑘∈𝐼𝑚−1
max
𝑙∈𝐼𝑛

{|𝑔1𝑙
− − 𝑔𝑘𝑙|}

|𝑔1𝑗
− − 𝑔𝑖𝑗| + 𝜆 max

𝑘∈𝐼𝑚−1
max
𝑙∈𝐼𝑛

{|𝑔1𝑙
− − 𝑔𝑘𝑙|}

, max
𝑘∈𝐼𝑚−1

max
𝑙∈𝐼𝑛

{|𝑔1𝑙
− − 𝑔𝑘𝑙|} ≠ 0

1, max
𝑘∈𝐼𝑚−1

max
𝑙∈𝐼𝑛

{|𝑔1𝑙
− − 𝑔𝑘𝑙|} = 0

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 10. Obtain [𝑠𝑖1
+ ](𝑚−1)×1 and [𝑠𝑖1

− ](𝑚−1)×1 defined by  

𝑠𝑖1
+ ≔

1

𝑛
∑

𝑛

𝑗=1

ℎ𝑖𝑗
+    and   𝑠𝑖1

− ≔
1

𝑛
∑

𝑛

𝑗=1

ℎ𝑖𝑗
− ,    𝑖 ∈ 𝐼𝑚−1 

Step 11. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by  

𝑠𝑖1 ≔ 1−
𝑠𝑖1
−

𝑠𝑖1
+ + 𝑠𝑖1

− ,    𝑖 ∈ 𝐼𝑚−1 

Step 12. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈} 

Guan (2017) has suggested an SDM method based on soft sets to select a house. We 

configure the proposed method therein as follows: 

Algorithm 3.8. G17(𝑹) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Determine a set 𝑅 of indices such that 𝑅 ⊆ 𝐼𝑛 

Step 3. Obtain [𝑏𝑖1](𝑚−1)×1 defined by 

𝑏𝑖1 ≔∑𝑎0𝑗𝑎𝑖𝑗
𝑗∈𝑅

,    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain [𝑐𝑖1](𝑚−1)×1 defined by 

𝑐𝑖1 ≔∑𝑎0𝑗𝑎𝑖𝑗

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the set 𝑉 = {𝑢𝑖 ∶  𝑏𝑖1 = max
𝑘∈𝐼𝑚−1

𝑏𝑘1} 
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Step 6. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔ {
𝑐𝑖1, 𝑢𝑖 ∈ 𝑉
𝑏𝑖1, 𝑢𝑖 ∈ 𝑈 − 𝑉

 

such that 𝑖 ∈ 𝐼𝑚−1 

Step 7. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈} 

In (Liu et al., 2017), the researchers have utilised fuzzy soft sets and ideal solution 

approaches. We configure the proposed method therein as follows: 

Algorithm 3.9. LQP17(𝒘) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛  

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 

𝑏0𝑗 ≔

{
 
 

 
 𝑎0𝑗
∑ 𝑎0𝑘
𝑛
𝑘=1

, ∑𝑎0𝑘

𝑛

𝑘=1

≠ 0

1

𝑛
, ∑𝑎0𝑘

𝑛

𝑘=1

= 0

    and    𝑏𝑖𝑗 ≔ 𝑎𝑖𝑗 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 3. Construct the parameters’ optimum solution matrix 𝑤 ≔ [𝑤1𝑗]1×𝑛 such that 0 ≤

𝑤1𝑗 ≤ 1, for all 𝑗 ∈ 𝐼𝑛 

Step 4. Obtain [𝑐𝑖1](𝑚−1)×1 defined by  

𝑐𝑖1 ≔∑𝑏0𝑗|𝑤1𝑗 − 𝑏𝑖𝑗|

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔ max
𝑘
𝑐𝑘1 − 𝑐𝑖1 such that 

𝑖 ∈ 𝐼𝑚−1 

Step 6. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈}  

Riaz and Hashmi (2017) have benefited fpfs-sets in a problem about determining a 

student for an announced scholarship. We configure the proposed method therein as 

follows: 

Algorithm 3.10. RH17 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛 and [𝑏𝑖𝑗]𝑚×𝑛 
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Step 2. Obtain [𝑐𝑗1]𝑛×1 and [𝑑𝑗1]𝑛×1 defined by 

𝑐𝑗1 ≔
1

𝑚 − 1
∑ 𝑎0𝑗𝑎𝑖𝑗

𝑚−1

𝑖=1

 and  𝑑𝑗1 ≔
1

𝑚 − 1
∑ 𝑏0𝑗𝑏𝑖𝑗

𝑚−1

𝑖=1

,     𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑒𝑖1](𝑚−1)×1 and [𝑓𝑖1](𝑚−1)×1 defined by 

𝑒𝑖1 ≔
1

𝑛
∑𝑎𝑖𝑘𝑐𝑘1

𝑛

𝑘=1

   and   𝑓𝑖1 ≔
1

𝑛
∑𝑏𝑖𝑘𝑑𝑘1

𝑛

𝑘=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔ 𝑒𝑖1 + 𝑓𝑖1 − 𝑒𝑖1𝑓𝑖1 such 

that 𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈} 

In (Taş et al., 2017), the authors have applied fuzzy soft sets to the stock management 

problem. We configure the proposed method therein as follows: 

Algorithm 3.11. TOD17  

TOD17 is the same as NRM16(𝐼𝑛) (Enginoğlu et al., 2021) and KM11(𝐼𝑛) (Enginoğlu 

and Öngel, 2020). Therefore, we prefer the notation KM11(𝐼𝑛). 

Atagün  et al. (2018) have introduced soft distributive max-min decision-making 

methods via soft matrices. We configure the proposed methods therein as follows: 

Algorithm 3.12. AKO18a 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛1
 and [𝑏𝑖𝑘]𝑚×𝑛2 

Step 2. Find AND-product fpfs-matrix [𝑐𝑖𝑝]𝑚×𝑛1𝑛2
 of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] 

Step 3. Find AND-product fpfs-matrix [𝑑𝑖𝑝]𝑚×𝑛1𝑛2
 of  [𝑏𝑖𝑘] and [𝑎𝑖𝑗] 

Step 4. Obtain [𝑒𝑖1](𝑚−1)×1 defined by  

𝑒𝑖1 ≔ max
𝑘
{
min
𝑝∈𝐽𝑘

(𝑐0𝑝𝑐𝑖𝑝), 𝐽𝑘 ≠ ∅

0, 𝐽𝑘 = ∅
 

such that 𝑖 ∈ 𝐼𝑚−1, 𝑘 ∈ 𝐼𝑛1, and 𝐽𝑘 ≔ {𝑝 | ∃𝑖, 𝑐0𝑝𝑐𝑖𝑝 ≠ 0, (𝑘 − 1)𝑛2 < 𝑝 ≤ 𝑘𝑛2} 

Step 5. Obtain [𝑓𝑖1](𝑚−1)×1 defined by  

𝑓𝑖1 ≔ max
𝑡
{
min
𝑝∈𝐽𝑡

(𝑑0𝑝𝑑𝑖𝑝), 𝐽𝑡 ≠ ∅

0, 𝐽𝑡 = ∅
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such that 𝑖 ∈ 𝐼𝑚−1, 𝑡 ∈ 𝐼𝑛2, and 𝐽𝑡 ≔ {𝑝 | ∃𝑖, 𝑑0𝑝𝑑𝑖𝑝 ≠ 0, (𝑡 − 1)𝑛1 < 𝑝 ≤ 𝑡𝑛1} 

Step 6. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔ max
 
{𝑒𝑖1, 𝑓𝑖1} such that 

𝑖 ∈ 𝐼𝑚−1 

Step 7. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈} 

Algorithm 3.13. AKO18o 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛1
 and [𝑏𝑖𝑘]𝑚×𝑛2 

Step 2. Find OR-product fpfs-matrix [𝑐𝑖𝑝]𝑚×𝑛1𝑛2
 of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] 

Step 3. Find OR-product fpfs-matrix [𝑑𝑖𝑝]𝑚×𝑛1𝑛2
 of  [𝑏𝑖𝑘] and [𝑎𝑖𝑗] 

Step 4. Obtain [𝑒𝑖1](𝑚−1)×1 defined by  

𝑒𝑖1 ≔ max
𝑘
{
min
𝑝∈𝐽𝑘

(𝑐0𝑝𝑐𝑖𝑝), 𝐽𝑘 ≠ ∅

0, 𝐽𝑘 = ∅
 

such that 𝑖 ∈ 𝐼𝑚−1, 𝑘 ∈ 𝐼𝑛1, and 𝐽𝑘 ≔ {𝑝 | ∃𝑖, 𝑐0𝑝𝑐𝑖𝑝 ≠ 0, (𝑘 − 1)𝑛2 < 𝑝 ≤ 𝑘𝑛2} 

Step 5. Obtain [𝑓𝑖1](𝑚−1)×1 defined by  

𝑓𝑖1 ≔ max
𝑡
{
min
𝑝∈𝐽𝑡

(𝑑0𝑝𝑑𝑖𝑝), 𝐽𝑡 ≠ ∅

0, 𝐽𝑡 = ∅
 

such that 𝑖 ∈ 𝐼𝑚−1, 𝑡 ∈ 𝐼𝑛2, and 𝐽𝑡 ≔ {𝑝 | ∃𝑖, 𝑑0𝑝𝑑𝑖𝑝 ≠ 0, (𝑡 − 1)𝑛1 < 𝑝 ≤ 𝑡𝑛1} 

Step 6. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔ max
 
{𝑒𝑖1, 𝑓𝑖1} such that 

𝑖 ∈ 𝐼𝑚−1 

Step 7. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈} 

Here, AKO18a and AKO18o denote AKO18 with AND-product and AKO18 with OR-

product, respectively. Moreover, SDM methods can also be constructed using products 

of fpfs-matrices and max-min, min-max, max-max, and min-min decision functions. 

In (Alcantud and Torrecilles, 2018), the researchers have applied fuzzy soft sets 

containing multiple measurements in the selecting portfolio. We configure the proposed 

method therein as follows: 

Algorithm 3.14. AT18(𝝀) 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

, ⋯ , [𝑎𝑖𝑗
𝑡 ]

𝑚×𝑛
  

Step 2. For 𝜆 ∈ (0,1), obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 
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𝑏𝑖𝑗 ≔
1− 𝜆

𝜆
∑(𝜆)𝑘𝑎𝑖𝑗

𝑘

𝑡

𝑘=1

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛 

Step 3. Apply Step 3 and 4 of A16 (Enginoğlu et al., 2021) to [𝑏𝑖𝑗] 

In (Karaca and Taş, 2018), the scholars have suggested two SDM 

methods using soft sets and fuzzy soft sets for decision-making 

problem related to life and non-life insurances. We configure the 

proposed methods therein as follows: 

Algorithm 3.15. KT18(𝑹) 

KT18(𝑅) and MS10(𝑅) (Enginoğlu and Öngel, 2020) are the same. Therefore, we prefer 

the notation MS10(𝑅). 

Algorithm 3.16. KT18/2(𝑹) 

KT18/2(𝑅) and KM11(𝑅) (Enginoğlu and Öngel, 2020) are the same. Therefore, we 

prefer the notation KM11(𝑅). 

Liu and Liu (2018) have proposed an SDM method using fuzzy soft sets based on the 

TOPSIS method with improved entropy weight. We configure the proposed method 

therein as follows: 

Algorithm 3.17. LL18(𝝀) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Obtain [𝑏𝑖𝑘
𝑗
]
(𝑚−1)×(𝑚−1)

 defined by 

𝑏𝑖𝑘
𝑗
≔ {

𝜒(𝑎𝑖𝑗 , 𝑎𝑘𝑗), 𝑖 ≠ 𝑘

0, 𝑖 = 𝑘
, 𝑖, 𝑘 ∈ 𝐼𝑚−1     

such that 

𝜒(𝑎𝑖𝑗 , 𝑎𝑘𝑗) ≔ {
1, 𝑎𝑖𝑗 ≥ 𝑎𝑘𝑗
0, 𝑎𝑖𝑗 < 𝑎𝑘𝑗

 

Step 3. Obtain [𝑐1𝑗]1×𝑛 defined by 

𝑐1𝑗 ≔

{
 
 

 
 ∑ ∑ 𝑏𝑖𝑘

𝑗𝑚−1
𝑘=1

𝑚−1
𝑖=1

∑ ∑ ∑ 𝑏𝑖𝑘
𝑙𝑛

𝑙=1
𝑚−1
𝑘=1

𝑚−1
𝑖=1

, ∑ ∑∑𝑏𝑖𝑘
𝑙

𝑛

𝑙=1

𝑚−1

𝑘=1

𝑚−1

𝑖=1

≠ 0

1

𝑛
, ∑ ∑∑𝑏𝑖𝑘

𝑙

𝑛

𝑙=1

𝑚−1

𝑘=1

𝑚−1

𝑖=1

= 0

,    𝑗 ∈ 𝐼𝑛 
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Step 4. Obtain [𝑑𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑑𝑖𝑗 ≔ √∑(𝑎𝑖𝑗 − 𝑎𝑘𝑗)
2

𝑚−1

𝑘=1

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 5. Obtain [𝑒1𝑗]1×𝑛 defined by 

𝑒1𝑗 ≔ ∑ 𝑑𝑖𝑗

𝑚−1

𝑖=1

,    𝑗 ∈ 𝐼𝑛 

Step 6. Obtain [𝑓1𝑗]1×𝑛 defined by 

𝑓1𝑗 ≔ −
1

𝜀 + ln(𝑚 − 1)
∑ 𝑐1𝑗

𝜀 + 𝑑𝑖𝑗

𝜀 + 𝑒1𝑗
ln (𝑐1𝑗

𝜀 + 𝑑𝑖𝑗

𝜀 + 𝑒1𝑗
)

𝑚−1

𝑖=1

,    𝑗 ∈ 𝐼𝑛 

Here, if 𝑚 = 1, then 
1

ln(𝑚−1)
 is undefined. Similarly, if 𝑒1𝑗 = 0 or 𝑑𝑖𝑗 = 0, then 

ln (𝑐1𝑗
𝑑𝑖𝑗

𝑒1𝑗
) is undefined. To cope with this drawback, we modify them as 

1

𝜀+ln(𝑚−1)
 and 

ln (𝑐1𝑗
𝜀+𝑑𝑖𝑗

𝜀+𝑒1𝑗
) such that 𝜀 ≪ 1 is a positive constant, e.g.,  𝜀 = 0.0001. 

Step 7. Obtain [𝑔1𝑗]1×𝑛 defined by 𝑔1𝑗 ≔ 1− 𝑓1𝑗 such that 𝑗 ∈ 𝐼𝑛 

Step 8. Obtain [ℎ1𝑗]1×𝑛 defined by 

ℎ1𝑗 ≔
𝑔1𝑗

∑ 𝑔1𝑙
𝑛
𝑙=1

,    𝑗 ∈ 𝐼𝑛 

Step 9. For 𝜆 ∈ [0,1], obtain [𝑣1𝑗]1×𝑛 defined by 

𝑣1𝑗 ≔ 𝜆𝑎0𝑗 + (1 − 𝜆)ℎ1𝑗 ,    𝑗 ∈ 𝐼𝑛 

Step 10. Obtain [𝑥𝑖𝑗](𝑚−1)×𝑛 defined by 𝑥𝑖𝑗 ≔ 𝑣1𝑗𝑎𝑖𝑗 such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 11. Obtain [𝑥𝑖𝑗
+]
1×𝑛

 and [𝑥𝑖𝑗
−]
1×𝑛

 defined by 𝑥1𝑗
+ ≔ max

𝑖∈𝐼𝑚−1
{𝑥𝑖𝑗} and 𝑥1𝑗

− ≔

min
𝑖∈𝐼𝑚−1

{𝑥𝑖𝑗} such that 𝑗 ∈ 𝐼𝑛 

Step 12. Obtain [𝑠𝑖1
+ ](𝑚−1)×1 and [𝑠𝑖1

− ](𝑚−1)×1 defined by 
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𝑠𝑖1
+ ≔ √∑(𝑥𝑖𝑗 − 𝑥1𝑗

+ )
2

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1   

and    

𝑠𝑖1
− ≔ √∑(𝑥𝑖𝑗 − 𝑥1𝑗

− )
2

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 13. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by  

𝑠𝑖1 ≔ {

𝑠𝑖1
−

𝑠𝑖1
+ + 𝑠𝑖1

− , 𝑠𝑖1
+ + 𝑠𝑖1

− ≠ 0

1, 𝑠𝑖1
+ + 𝑠𝑖1

− = 0

,   𝑖 ∈ 𝐼𝑚−1 

Step 14. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈} 

In (Pal, 2018), the researcher has modified the SDM method provided in (Çağman et al., 

2011b) for the multi-fuzzy soft sets. We configure the proposed method therein as 

follows: 

Algorithm 3.18. P18 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

, …, [𝑎𝑖𝑗
𝑡 ]

𝑚×𝑛
 

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 

𝑏𝑖𝑗 ≔
1

𝑡
∑𝑎𝑖𝑗

𝑘

𝑡

𝑘=1

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛 

Step 3. Apply CEC11 (Enginoğlu and Öngel, 2020) to [𝑏𝑖𝑗] 

Porchelvi and Snekaa (2018) have suggested an SDM method using fuzzy soft sets for 

multi-criteria decision-making problems. We configure the proposed method therein as 

follows: 

Algorithm 3.19. PS18 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

, …, [𝑎𝑖𝑗
𝑡 ]

𝑚×𝑛
 

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 



SDM Methods’ Configurations (2017-2019) and …                                                        57 

 

© 2021 The Authors. 

Published by Firouzabad Institute of Higher Education, Firouzabad, Fars, Iran 

𝑏𝑖𝑗 ≔
1

𝑡
∑𝑎𝑖𝑗

𝑘

𝑡

𝑘=1

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑐𝑖𝑗](𝑚−1)×𝑛 defined by 𝑐𝑖𝑗 ≔ 𝑏0𝑗𝑏𝑖𝑗 such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 4. Obtain [𝑑𝑖𝑗](𝑚−1)×𝑛 defined by 

𝑑𝑖𝑗 ≔

{
 
 

 
 𝑐𝑖𝑗
∑ 𝑐𝑘𝑗
𝑚−1
𝑘=1

, ∑ 𝑐𝑘𝑗

𝑚−1

𝑘=1

≠ 0

1

𝑚 − 1
, ∑ 𝑐𝑘𝑗

𝑚−1

𝑘=1

= 0

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 5. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔∑𝑑𝑖𝑗

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 6. Obtain the decision set { uk 
ŝk1 |uk ∈ U} 

In (Riaz and Hashmi, 2018), the researchers have modified the SDM method provided 

in (Çağman et al., 2011a) to work with two fpfs-sets. We configure the proposed method 

therein as follows: 

Algorithm 3.20. RH18 

Step 1. Construct two fpfs-matrices [𝑎𝑖𝑗]𝑚×𝑛 and [𝑏𝑖𝑗]𝑚×𝑛 

Step 2. Obtain [𝑐𝑖1](𝑚−1)×1 defined by 

𝑐𝑖1 ≔

{
 
 

 
 1

∑ sgn(𝑎0𝑗)
𝑛
𝑗=1

∑𝑎0𝑗𝑎𝑖𝑗

𝑛

𝑗=1

, ∑sgn(𝑎0𝑗)

𝑛

𝑗=1

≠ 0

1

𝑛
, ∑sgn(𝑎0𝑗)

𝑛

𝑗=1

= 0

,    𝑖 ∈ 𝐼𝑚−1 

Step 3. Obtain [𝑑𝑖1](𝑚−1)×1 defined by 
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𝑑𝑖1 ≔

{
 
 

 
 1

∑ sgn(𝑏0𝑗)
𝑛
𝑗=1

∑𝑏0𝑗𝑏𝑖𝑗

𝑛

𝑗=1

, ∑sgn(𝑏0𝑗)

𝑛

𝑗=1

≠ 0

1

𝑛
, ∑sgn(𝑏0𝑗)

𝑛

𝑗=1

= 0

,    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔ 𝑐𝑖1 + 𝑑𝑖1 − 𝑐𝑖1𝑑𝑖1 such 

that 𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈} 

Riaz et al. (2018) have propounded an SDM method based on the support sets of the 

considered fpfs-sets. We configure the proposed method therein as follows: 

Algorithm 3.21. RHF18 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

, …, [𝑎𝑖𝑗
𝑡 ]

𝑚×𝑛
 

Step 2. For 𝑘 ∈ 𝐼𝑡, obtain [𝑏𝑖𝑗
𝑘 ]
(𝑚−1)×𝑛

 defined by 

𝑏𝑖𝑗
𝑘 ≔ {

1, 𝑎0𝑗
𝑘 𝑎𝑖𝑗

𝑘 > 0

0, 𝑎0𝑗
𝑘 𝑎𝑖𝑗

𝑘 = 0
 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 3. For 𝑘 ∈ 𝐼𝑡, obtain [𝑐𝑖1
𝑘 ]

(𝑚−1)×1
 defined by 

𝑐𝑖1
𝑘 ≔∑𝑏𝑖𝑗

𝑘

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔∑𝑐𝑖1
𝑘

𝑡

𝑘=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈} 

In (Xiao, 2018), the author has offered two SDM methods using hybrid fuzzy soft sets 

for medical diagnosis. We configure the proposed methods therein as follows: 

Algorithm 3.22. X18 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Obtain [𝑏𝑖𝑗](𝑚−1)×𝑛 defined by 
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𝑏𝑖𝑗 ≔

{
 
 

 
 𝑎0𝑗𝑎𝑖𝑗
∑ 𝑎0𝑗𝑎𝑘𝑗
𝑚−1
𝑘=1

, ∑ 𝑎0𝑗𝑎𝑘𝑗

𝑚−1

𝑘=1

≠ 0

1

𝑚 − 1
, ∑ 𝑎0𝑗𝑎𝑘𝑗

𝑚−1

𝑘=1

= 0

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑐1𝑗]1×𝑛 defined by 

𝑐1𝑗 ≔ 𝑒−∑ 𝑏𝑖𝑗 log2(𝜀+𝑏𝑖𝑗)
𝑚−1
𝑖=1 ,    𝑗 ∈ 𝐼𝑛 

Here, if 𝑏𝑖𝑗 = 0, then log2(𝑏𝑖𝑗) is undefined. To cope with this drawback, we modify it 

as log2(𝜀 + 𝑏𝑖𝑗) such that 𝜀 ≪ 1 is a positive constant, e.g.,  𝜀 = 0.0001. 

Step 4. Obtain [𝑑1𝑗]1×𝑛 defined by 

𝑑1𝑗 ≔
𝑐1𝑗

∑ 𝑐1𝑘
𝑛
𝑘=1

,    𝑗 ∈ 𝐼𝑛 

Step 5. Obtain [𝑒𝑖𝑗]𝑛×𝑛 defined by 

𝑒𝑖𝑗 ≔

{
 
 

 
 0.5, 𝑖 = 𝑗 or 𝑛 = 2

𝑉𝑎𝑟(𝑑1𝑖)

𝑉𝑎𝑟(𝑑1𝑖) + 𝑉𝑎𝑟(𝑑1𝑗)
, 𝑖 ≠ 𝑗, 𝑛 ≠ 2, and Var(𝑑1𝑖) + Var(𝑑1𝑗) ≠ 0

0, otherwise

      

such that 𝑖, 𝑗 ∈ 𝐼𝑛 and 

Var(𝑑1𝑘) ≔ Var({𝑑11, 𝑑12, … , 𝑑1(𝑘−1), 𝑑1(𝑘+1), … , 𝑑1𝑛}) =

∑ (𝑑1𝑖 − ∑
𝑑1𝑡
𝑛 − 1

𝑛
𝑡=1
𝑡≠𝑘

)
2

𝑛
𝑖=1
𝑖≠𝑘

𝑛 − 1
 

Step 6. Obtain [𝑓𝑖𝑗]𝑛×𝑛 defined by 

𝑓𝑖𝑗 ≔
1

𝑛
(∑(𝑒𝑖𝑘 + 𝑒𝑘𝑗)

𝑛

𝑘=1

) − 0.5,    𝑖, 𝑗 ∈ 𝐼𝑛 

Step 7. Obtain [𝑔1𝑗]1×𝑛 defined by 

𝑔1𝑗 ≔
2

𝑛2
∑𝑓𝑗𝑘

𝑛

𝑘=1

,    𝑗 ∈ 𝐼𝑛 

Step 8. Obtain [ℎ1𝑗]1×𝑛 defined by ℎ1𝑗 ≔ 𝑔1𝑗𝑑1𝑗 such that 𝑗 ∈ 𝐼𝑛 
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Step 9. Obtain [𝑣1𝑗]1×𝑛 defined by 

𝑣1𝑗 ≔
ℎ1𝑗

∑ ℎ1𝑘
𝑛
𝑘=1

,    𝑗 ∈ 𝐼𝑛 

Step 10. Obtain [𝑥𝑖𝑗](𝑚−1)×𝑛 defined by 𝑥𝑖𝑗 ≔ 𝑏𝑖𝑗(1 − 𝑣1𝑗) such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈

𝐼𝑛 

Step 11. Obtain [𝑦1𝑗]1×𝑛 defined by 

𝑦1𝑗 ≔ 1− ∑ 𝑥𝑖𝑗

𝑚−1

𝑖=1

,    𝑗 ∈ 𝐼𝑛 

Step 12. Apply Step 8-10 of XWL14 (Enginoğlu et al., 2021) to [𝑥𝑖𝑗] and [𝑦1𝑗] 

Algorithm 3.23. X18/2 

Step 1. Construct two fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛1
 and [𝑏𝑖𝑘]𝑚×𝑛2 

Step 2. Find AND-product fpfs-matrix [𝑐𝑖𝑝]𝑚×𝑛1𝑛2
 of [𝑎𝑖𝑗] and [𝑏𝑖𝑘] 

Step 3. Apply X18 to [𝑐𝑖𝑝]  

Aggarwal (2019) has proposed two SDM methods based on soft sets and fuzzy soft 

sets. We configure the proposed methods therein as follows: 

Algorithm 3.24. A19(𝑹,𝒘, 𝝀𝟏, 𝝀𝟐, 𝝀𝟑, 𝝀𝟒, 𝝀𝟓) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Construct 𝑤 ≔ [𝑤1𝑗]1×𝑛 such that 0 ≤ 𝑤1𝑗 ≤ 1,  for all j ∈ In 

Step 3. For λ1, λ2, λ3, λ4, λ5 ∈ ℝ, obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 

𝑏𝑖𝑗 ≔ {𝑒
−(𝜆1(𝑎𝑖𝑗)

3
+𝜆2(𝑎𝑖𝑗)

2
+𝜆3𝑎𝑖𝑗+𝜆4)

𝜆5

, 𝑎𝑖𝑗 ≥ 𝑤1𝑗
0, 𝑎𝑖𝑗 < 𝑤1𝑗

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛 

Step 4. Obtain [𝑐𝑖𝑗]𝑚×𝑛 defined by 𝑐𝑖𝑗 ≔ 𝑎𝑖𝑗𝑏𝑖𝑗 such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛 

Step 5. Apply MS10(𝑅)  (Enginoğlu and Öngel, 2020) to [𝑐𝑖𝑗] such that 𝑅 ⊆ 𝐼𝑛 
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Algorithm 3.25. A19/2(𝑹) 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗1
1 ]

𝑚×𝑛1
, [𝑎𝑖𝑗2

2 ]
𝑚×𝑛2

, …, [𝑎𝑖𝑗𝑡
𝑡 ]

𝑚×𝑛𝑡
 

Step 2. Determine a set 𝑅 of indices such that 𝑅 ⊆ 𝐼𝑛1𝑛2⋯𝑛𝑡 

Step 3. Obtain [𝑏𝑖𝑝]𝑚×𝑛1𝑛2⋯𝑛𝑡
 defined by  

𝑏𝑖𝑝 ≔∏𝑎𝑖𝑗𝑘
𝑘

𝑡

𝑘=1

 

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑝 = (𝑗1 − 1)𝑛2𝑛3…𝑛𝑡 + (𝑗2 − 1)𝑛3𝑛4…𝑛𝑡 +⋯+ 𝑗𝑡 

Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by  

𝑠𝑖1 ≔ max
𝑝∈𝑅

{𝑏0𝑝𝑏𝑖𝑝} 

such that 𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈} 

In (Ma et al., 2019), the authors have applied fuzzy soft sets to measure the similarity of 

the websites. We configure the proposed method therein as follows: 

Algorithm 3.26. MLQFG19 

MLQFG19 is the same as FJLL10/2m (Enginoğlu and Öngel, 2020). Therefore, we will 

prefer the notation FJLL10/2m. 

Sandhiya and Selvakumari (2019a) have applied fuzzy soft sets to specify an eligible 

candidate for a company. We configure the proposed method therein as follows: 

Algorithm 3.27. SS19 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

, …, [𝑎𝑖𝑗
𝑡 ]

𝑚×𝑛
 

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 𝑏𝑖𝑗 ≔ 𝑚𝑎𝑥
𝑘∈𝐼𝑡

{𝑎𝑖𝑗
𝑘 } such that 𝑖 ∈ 𝐼𝑚−1

∗  and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑐𝑖𝑘](𝑚−1)×(𝑚−1) defined by  

𝑐𝑖𝑘 ≔∑

𝑛

𝑗=1

𝑏0𝑗𝜒(𝑏𝑖𝑗 , 𝑏𝑘𝑗),    𝑖, 𝑘 ∈ 𝐼𝑚−1 

such that  

𝜒(𝑏𝑖𝑗 , 𝑏𝑘𝑗) ≔ {
1, 𝑏𝑖𝑗 ≥ 𝑏𝑘𝑗
0, 𝑏𝑖𝑗 < 𝑏𝑘𝑗
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Step 4. Obtain [𝑑𝑖1](𝑚−1)×1 defined by  

𝑑𝑖1 ≔ ∑

𝑚−1

𝑘=1

𝑐𝑖𝑘,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain [𝑒𝑖1](𝑚−1)×1 defined by  

𝑒𝑖1 ≔ ∑

𝑚−1

𝑘=1

𝑐𝑘𝑖 ,    𝑖 ∈ 𝐼𝑚−1 

Step 6. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by  

𝑠𝑖1 ≔ 𝑑𝑖1 + 𝑒𝑖1,    𝑖 ∈ 𝐼𝑚−1 

Step 7. Obtain the decision set {𝑠̂𝑖1𝑢𝑘|𝑢𝑘 ∈ 𝑈}  

In (Sandhiya and Selvakumari, 2019b), the scholars have applied fuzzy soft sets to a 

decision-making problem based on teaching evaluation performance. We configure the 

proposed methods therein as follows: 

Algorithm 3.28. SS19/2 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

, … , [𝑎𝑖𝑗
𝑡 ]

𝑚×𝑛
  

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 

𝑏𝑖𝑗 ≔
1

𝑡
∑

𝑡

𝑘=1

𝑎𝑖𝑗
𝑘  

such that 𝑖 ∈ 𝐼𝑚−1
∗ and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑐𝑖𝑗]𝑚×𝑛 defined by 

𝑐0𝑗 ≔

{
 
 

 
 𝑏0𝑗
∑ 𝑏0𝑙
𝑛
𝑙=1

, ∑𝑏0𝑙

𝑛

𝑙=1

≠ 0

1

𝑛
, ∑𝑏0𝑙

𝑛

𝑙=1

= 0

 

and 

𝑐𝑖𝑗 ≔ {

𝑏𝑖𝑗

max
𝑙∈𝐼𝑚−1

𝑏𝑙𝑗
, max

𝑙∈𝐼𝑚−1
𝑏𝑙𝑗 ≠ 0

1, max
𝑙∈𝐼𝑚−1

𝑏𝑙𝑗 = 0
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such  that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by  

𝑠𝑖1 ≔∑𝑐0𝑗𝑐𝑖𝑗

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set {𝑠̂𝑘1𝑢𝑘|𝑢𝑘 ∈ 𝑈} 

Algorithm 3.29. SS19/3 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

, …, [𝑎𝑖𝑗
𝑡 ]

𝑚×𝑛
  

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 

𝑏𝑖𝑗 ≔
1

𝑡
∑

𝑡

𝑘=1

𝑎𝑖𝑗
𝑘  

such that 𝑖 ∈ 𝐼𝑚−1
∗ and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑐𝑖𝑗]𝑚×𝑛 defined by 

𝑐0𝑗 ≔

{
 
 

 
 𝑏0𝑗
∑ 𝑏0𝑙
𝑛
𝑙=1

, ∑𝑏0𝑙

𝑛

𝑙=1

≠ 0

1

𝑛
, ∑𝑏0𝑙

𝑛

𝑙=1

= 0

 

and 

𝑐𝑖𝑗 ≔

{
 
 

 
 𝑏𝑖𝑗
∑ 𝑏𝑙𝑗
𝑚−1
𝑙=1

, ∑ 𝑏𝑙𝑗

𝑚−1

𝑙=1

≠ 0

1

𝑚 − 1
, ∑ 𝑏𝑙𝑗

𝑚−1

𝑙=1

= 0

 

such  that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by  

𝑠𝑖1 ≔∑𝑐0𝑗𝑐𝑖𝑗

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set {𝑠̂𝑘1𝑢𝑘|𝑢𝑘 ∈ 𝑈} 
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Algorithm 3.30. SS19/4 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

, …, [𝑎𝑖𝑗
𝑡 ]

𝑚×𝑛
  

Step 2. Obtain [𝑏𝑖𝑗]𝑚×𝑛 defined by 

𝑏𝑖𝑗 ≔
1

𝑡
∑

𝑡

𝑘=1

𝑎𝑖𝑗
𝑘  

such that 𝑖 ∈ 𝐼𝑚−1
∗  and 𝑗 ∈ 𝐼𝑛 

Step 3. Obtain [𝑐𝑖𝑗]𝑚×𝑛 defined by 

𝑐0𝑗 ≔

{
 
 

 
 𝑏0𝑗
∑ 𝑏0𝑙
𝑛
𝑙=1

, ∑𝑏0𝑙

𝑛

𝑙=1

≠ 0

1

𝑛
, ∑𝑏0𝑙

𝑛

𝑙=1

= 0

 

and 

𝑐𝑖𝑗 ≔

{
 
 

 
 𝑏𝑖𝑗 − min

𝑙∈𝐼𝑚−1
𝑏𝑙𝑗

max
𝑙∈𝐼𝑚−1

𝑏𝑙𝑗 − min
𝑙∈𝐼𝑚−1

𝑏𝑙𝑗
, max

𝑙∈𝐼𝑚−1
𝑏𝑙𝑗 ≠ min

𝑙∈𝐼𝑚−1
𝑏𝑙𝑗

1, max
𝑙∈𝐼𝑚−1

𝑏𝑙𝑗 = min
𝑙∈𝐼𝑚−1

𝑏𝑙𝑗

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by  

𝑠𝑖1 ≔∑𝑐0𝑗𝑐𝑖𝑗

𝑛

𝑗=1

,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set {𝑠̂𝑘1𝑢𝑘|𝑢𝑘 ∈ 𝑈} 

Sharma and Singh (2019) have examined the cleanliness ranking of public health centres 

using fuzzy soft sets. We configure the proposed method therein as follows: 

Algorithm 3.31. SS19/5(𝒘) 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

, …, [𝑎𝑖𝑗
𝑡 ]

𝑚×𝑛
  

Step 2. Obtain [𝑏𝑘𝑙]𝑡×𝑡 defined by 
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𝑏𝑘𝑙 ≔

{
 
 

 
 ∑ ∑ 𝑎0𝑗

𝑘 𝑎𝑖𝑗
𝑘 𝑎0𝑗

𝑙 𝑎𝑖𝑗
𝑙𝑚−1

𝑖=1
𝑛
𝑗=1

√∑ ∑ (𝑎0𝑗
𝑘 𝑎𝑖𝑗

𝑘 )
2
 𝑚−1

𝑖=1
𝑛
𝑗=1

√∑ ∑ (𝑎0𝑗
𝑙 𝑎𝑖𝑗

𝑙 )
2
 𝑚−1

𝑖=1
𝑛
𝑗=1

, √∑∑(𝑎0𝑗
𝑘 𝑎𝑖𝑗

𝑘 )
2
 

𝑚−1

𝑖=1

𝑛

𝑗=1

√∑∑(𝑎0𝑗
𝑙 𝑎𝑖𝑗

𝑙 )
2
 

𝑚−1

𝑖=1

𝑛

𝑗=1

≠ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

such that 𝑘, 𝑙 ∈ 𝐼𝑡 

Step 3. Obtain [𝑐𝑘1]𝑡×1 defined by 

𝑐𝑘1 ≔
∑ 𝑏𝑘𝑙
𝑡
𝑙=1,𝑙≠𝑘

𝑡 − 1
,    𝑘 ∈ 𝐼𝑡 

Step 4. Obtain [𝑑𝑘1]𝑡×1 defined by 

𝑑𝑘1 ≔

{
 
 

 
 𝑐𝑘1
∑ 𝑐𝑙1
𝑡
𝑙=1

, ∑𝑐𝑙1

𝑡

𝑙=1

≠ 0

1

𝑡
, ∑𝑐𝑙1

𝑡

𝑙=1

= 0

,    𝑘 ∈ 𝐼𝑡 

Step 5. Obtain [𝑒𝑖𝑗](𝑚−1)×𝑛 defined by 𝑒𝑖𝑗 ≔ ∑ 𝑑𝑘1𝑎𝑖𝑗
𝑘𝑡

𝑘=1  such that 𝑖 ∈ 𝐼𝑚−1 and 𝑗 ∈ 𝐼𝑛 

Step 6. Construct 𝑤 ≔ [𝑤1𝑗]1×𝑛 such that 0 ≤ 𝑤1𝑗 ≤ 1 and ∑ 𝑤1𝑗
𝑛
𝑗=1 = 1 

Step 7. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔ ∑ 𝑤1𝑗𝑒𝑖𝑗
𝑛
𝑗=1  such that 𝑖 ∈

𝐼𝑚−1 

Step 8. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈} 

In (Wang and Qin, 2019), the authors have provided an SDM approach using modal-

style operators of fuzzy soft sets. We configure the proposed method therein as follows: 

Algorithm 3.32. WQ19 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Obtain [𝑏𝑖1](𝑚−1)×1 defined by 

𝑏𝑖1 ≔ min
𝑗∈𝐼𝑛

{𝜒𝑖𝑗} ,    𝑖 ∈ 𝐼𝑚−1 

such that 

𝜒𝑖𝑗 ≔ {
1, 𝑎0𝑗 ≤ 𝑎𝑖𝑗
𝑎𝑖𝑗 , 𝑎0𝑗 > 𝑎𝑖𝑗

 

Step 3. Obtain [𝑐𝑖1](𝑚−1)×1 defined by 

𝑐𝑖1 ≔ max
𝑗∈𝐼𝑛

{min{𝑎0𝑗 , 𝑎𝑖𝑗}} ,    𝑖 ∈ 𝐼𝑚−1 
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Step 4. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 

𝑠𝑖1 ≔ 𝑏𝑖1 + 𝑐𝑖1,    𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈} 

Zou et al. (2019) have constructed an SDM method based on soft sets and aggregation 

operators. We configure the proposed method therein as follows: 

Algorithm 3.33. ZCW19(𝜹, 𝜽) 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

, …, [𝑎𝑖𝑗
𝑡 ]

𝑚×𝑛
 

Step 2. Obtain [𝑏𝑖𝑘](𝑚−1)×𝑡 defined by  

𝑏𝑖𝑘 ≔∑𝑎0𝑗
𝑘 𝑎𝑖𝑗

𝑘

𝑛

𝑗=1

 

such that 𝑖 ∈ 𝐼𝑚−1 and 𝑘 ∈ 𝐼𝑡 

Step 3. Construct 𝛿 ≔ [𝛿1𝑘]1×𝑡 such that 0 ≤ 𝛿1𝑘 ≤ 1 and ∑ 𝛿1𝑘
𝑡
𝑘=1 = 1 

Step 4. Obtain [𝑐𝑖𝑘](𝑚−1)×𝑡 defined by 𝑐𝑖𝑘 ≔ 𝑡𝛿1𝑘𝑏𝑖𝑘 such that 𝑖 ∈ 𝐼𝑚−1 and 𝑘 ∈ 𝐼𝑡 

Step 5. For all 𝑖 ∈ 𝐼𝑚−1, obtain [𝑑1𝑘
𝑖 ]

1×𝑡
 such that [𝑑1𝑘

𝑖 ] denote the non-increasing-

sorted elements of the 𝑖th row of [𝑐𝑖𝑘] 

Step 6. Construct 𝜃 ≔ [𝜃1𝑘]1×𝑡 such that 0 ≤ 𝜃1𝑘 ≤ 1 and ∑ 𝜃1𝑘
𝑡
𝑘=1 = 1 

Step 7. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by  

𝑠𝑖1 ≔∑𝜃1𝑘𝑑1𝑘
𝑖

𝑡

𝑘=1

, 𝑖 ∈ 𝐼𝑚−1 

Step 8. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈} 

In (Zhang and  Zhan, 2019), the researchers have presented an SDM method modelling 

a company’s recruitment scenario via fuzzy soft 𝛽-covering sets. We configure the 

proposed method therein as follows: 

Algorithm 3.34. ZZ19(𝝀, 𝜸) 

Step 1. Construct an fpfs-matrix [𝑎𝑖𝑗]𝑚×𝑛 

Step 2. Construct 𝛾 ≔ [𝛾𝑖1](𝑚−1)×1 such that 0 ≤ 𝛾𝑖1 ≤ 1, for all 𝑖 ∈ 𝐼𝑚−1 

Step 3. For 𝜆 ∈ (0,1], obtain [𝑏𝑖𝑘](𝑚−1)×(𝑚−1) and [𝑐𝑖𝑘](𝑚−1)×(𝑚−1) defined by 
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𝑏𝑖𝑘 ≔ {
min
𝑗∈𝑅𝑘

{𝑎0𝑗𝑎𝑖𝑗} , 𝑅𝑘 ≠ ∅

0, 𝑅𝑘 = ∅
,    𝑖, 𝑘 ∈ 𝐼𝑚−1 

and 

𝑐𝑖𝑘 ≔ {
min
𝑗∈𝑅𝑖

{𝑎0𝑗𝑎𝑘𝑗} , 𝑅𝑖 ≠ ∅

0, 𝑅𝑖 = ∅
,    𝑖, 𝑘 ∈ 𝐼𝑚−1  

such that 𝑅𝑙 ≔ {𝑗 ∶ 𝑎𝑙𝑗 ≥ 𝜆}, for all 𝑙 ∈ 𝐼𝑚−1 

Step 4. Obtain [𝑑𝑖1](𝑚−1)×1 defined by  

𝑑𝑖1 ≔ min
𝑘∈𝐼𝑚−1

{max{1 − 𝑏𝑘𝑖 , 1 − 𝑐𝑘𝑖 , 𝛾𝑘1}} , 𝑖 ∈ 𝐼𝑚−1 

Step 5. Obtain [𝑒𝑖1](𝑚−1)×1 defined by  

𝑒𝑖1 ≔ max
𝑘∈𝐼𝑚−1

{min{𝑏𝑘𝑖 , 𝑐𝑘𝑖 , 𝛾𝑘1}} , 𝑖 ∈ 𝐼𝑚−1 

Step 6. Obtain the score matrix [𝑠𝑖1](𝑚−1)×1 defined by 𝑠𝑖1 ≔ 𝛾𝑖1 + 𝑑𝑖1 + 𝑒𝑖1 such that 

𝑖 ∈ 𝐼𝑚−1 

Step 7. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 ∈ 𝑈} 

Differently from the above methods ranking the alternatives, MD18 (Mondal and De, 

2018) and ND18 (Neog and Dutta, 2018) rank the alternatives’ sets. Therefore, in the 

following section, they have not been compared with the others.  

In (Mondal and De, 2018), the authors have provided an SDM method using fuzzy soft 

sets. We configure the proposed method therein as follows: 

Algorithm 3.35. MD18 

MD18 and ND18 are the same. Therefore, we prefer the notation ND18. 

In (Neog and Dutta, 2018), the authors have provided an application of fuzzy soft sets to 

decision-making. We configure the proposed method therein as follows: 

Algorithm 3.36. ND18 

Step 1. Construct fpfs-matrices [𝑎𝑖𝑗
1 ]

𝑚×𝑛
, [𝑎𝑖𝑗

2 ]
𝑚×𝑛

, …, [𝑎𝑖𝑗
𝑡 ]

𝑚×𝑛
 such that 𝑈1 ≠ 𝑈2 ≠

⋯ ≠ 𝑈𝑡 

Step 2. For 𝑘 ∈ 𝐼𝑡, obtain [𝑏1𝑗
𝑘 ]

1×𝑛
 defined by 

𝑏1𝑗
𝑘 ≔

1

𝑡(𝑚 − 1)
∑ 𝑎0𝑗

𝑘 𝑎𝑖𝑗
𝑘

𝑚−1

𝑖=1

,    𝑗 ∈ 𝐼𝑛 
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Step 3. Obtain the score matrix [𝑠𝑘1]𝑡×1 defined by 

𝑠𝑘1 ≔∑𝑏1𝑗
𝑘

𝑛

𝑗=1

,    𝑘 ∈ 𝐼𝑡 

Step 4. Obtain the decision set { 𝑈𝑘 
𝑠̂𝑘1 |𝑈𝑘 ∈ {𝑈1, 𝑈2, … , 𝑈𝑡}} 

Moreover, KAS18aa and KAS18aa/2 (Kamacı et al., 2018) have dealt with multi-case 

constructed by multi-expert via soft matrices. Therefore, in the following section, they 

have not been compared with the others. We configure the proposed method therein as 

follows: 

Algorithm 3.37. KAS18aa 

Step 1. Construct fpfs-matrices 

[𝑎𝑖1𝑗1
11 ]

(𝑚1+1)×𝑛1
, [𝑎𝑖2𝑗1

21 ]
(𝑚2+1)×𝑛1

, ⋯, [𝑎𝑖𝑡𝑗1
𝑡1 ]

(𝑚𝑡+1)×𝑛1
, 

[𝑎𝑖1𝑗2
12 ]

(𝑚1+1)×𝑛2
, [𝑎𝑖2𝑗2

22 ]
(𝑚2+1)×𝑛2

, ⋯, [𝑎𝑖𝑡𝑗2
𝑡2 ]

(𝑚𝑡+1)×𝑛2
, 

 ⋮ 

[𝑎𝑖1𝑗𝑠
1𝑠 ]

(𝑚1+1)×𝑛𝑠
, [𝑎𝑖2𝑗𝑠

2𝑠 ]
(𝑚2+1)×𝑛𝑠

, ⋯, [𝑎𝑖𝑡𝑗𝑠
𝑡𝑠 ]

(𝑚𝑡+1)×𝑛𝑠
 

Step 2. Obtain 

[𝑏𝑖1𝑗1
11 ] = [𝑎0𝑗1

11 𝑎𝑖1𝑗1
11 ]

𝑚1×𝑛1
, [𝑏𝑖2𝑗1

21 ] = [𝑎0𝑗1
21 𝑎𝑖2𝑗1

21 ]
𝑚2×𝑛1

, ⋯, [𝑏𝑖𝑡𝑗1
𝑡1 ] = [𝑎0𝑗1

𝑡1 𝑎𝑖𝑡𝑗1
𝑡1 ]

𝑚𝑡×𝑛1
, 

[𝑏𝑖1𝑗2
12 ] = [𝑎0𝑗1

11 𝑎𝑖1𝑗2
12 ]

𝑚1×𝑛2
, [𝑏𝑖2𝑗2

22 ] = [𝑎0𝑗1
21 𝑎𝑖2𝑗2

22 ]
𝑚2×𝑛2

, ⋯, [𝑏𝑖𝑡𝑗2
𝑡2 ] = [𝑎0𝑗1

𝑡1 𝑎𝑖𝑡𝑗2
𝑡2 ]

𝑚𝑡×𝑛2
, 

 ⋮ 

[𝑏𝑖1𝑗𝑠
1𝑠 ] = [𝑎0𝑗1

11 𝑎𝑖1𝑗𝑠
1𝑠 ]

𝑚1×𝑛𝑠
, [𝑏𝑖2𝑗𝑠

2𝑠 ] = [𝑎0𝑗1
21 𝑎𝑖2𝑗𝑠

2𝑠 ]
𝑚2×𝑛𝑠

, ⋯, [𝑏𝑖𝑡𝑗𝑠
𝑡𝑠 ] = [𝑎0𝑗1

𝑡1 𝑎𝑖𝑡𝑗𝑠
𝑡𝑠 ]

𝑚𝑡×𝑛𝑠
 

Step 3. Find AND-product fs-matrices (Çağman and Enginoğlu, 2012) 

[𝑐𝑗1𝑝
1 ]

𝑛1×𝑚1𝑚2…𝑚𝑡
 of [𝑏𝑖1𝑗1

11 ]
𝑇
,[𝑏𝑖2𝑗1

21 ]
𝑇
, ⋯, [𝑏𝑖𝑡𝑗1

𝑡1 ]
𝑇
 

[𝑐𝑗2𝑝
2 ]

𝑛2×𝑚1𝑚2…𝑚𝑡
 of [𝑏𝑖1𝑗2

12 ]
𝑇
, [𝑏𝑖2𝑗2

22 ]
𝑇
, ⋯, [𝑏𝑖𝑡𝑗2

𝑡2 ]
𝑇
 

⋮  

[𝑐𝑗𝑠𝑝
𝑠 ]

𝑛𝑠×𝑚1𝑚2…𝑚𝑡
 of [𝑏𝑖1𝑗𝑠

1𝑠 ]
𝑇
, [𝑏𝑖2𝑗𝑠

2𝑠 ]
𝑇
, ⋯, [𝑏𝑖𝑡𝑗𝑠

𝑡𝑠 ]
𝑇
 

such that  𝑝 = (𝑖1 − 1)𝑚2𝑚3…𝑚𝑡 + (𝑖2 − 1)𝑚3𝑚4…𝑚𝑡 +⋯+ 𝑖𝑡 
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Step 4. Find AND-product fs-matrix (Çağman and Enginoğlu, 2012) 

[𝑐𝑝𝑣]𝑚1𝑚2…𝑚𝑡×𝑛1𝑛2⋯𝑛𝑠
 of [𝑐𝑗1𝑝

1 ]
𝑇
, [𝑐𝑗2𝑝

2 ]
𝑇
, …, [𝑐𝑗𝑠𝑝

𝑠 ]
𝑇
 such that  𝑣 = (𝑗1 −

1)𝑛2𝑛3⋯𝑛𝑠 + (𝑗2 − 1)𝑛3𝑛4⋯𝑛𝑠 +⋯+ 𝑗𝑠 

Step 5. Obtain the score matrix [𝑠𝑝1]𝑚1𝑚2…𝑚𝑡×1
 defined by 

𝑠𝑝1 ≔
1

𝑛1𝑛2⋯𝑛𝑠
∑ 𝑐𝑝𝑣

𝑛1𝑛2⋯𝑛𝑠

𝑣=1

,    𝑝 ∈ 𝐼𝑚1𝑚2…𝑚𝑡
 

such that 𝑝 = (𝑘1 − 1)𝑚2𝑚3…𝑚𝑡 + (𝑘2 − 1)𝑚3𝑚4…𝑚𝑡 +⋯+ 𝑘𝑡 and 

(𝑢𝑘1 , 𝑢𝑘2 , ⋯ , 𝑢𝑘𝑡) ∈ 𝑈1×𝑈2×⋯×𝑈𝑡 

Step 6. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 = (𝑢𝑘1 , 𝑢𝑘2 , ⋯ , 𝑢𝑘𝑡)} 

Algorithm 3.38. KAS18aa/2 

Step 1. Construct fpfs-matrices [𝑎𝑖1𝑗
1 ]

(𝑚1+1)×𝑛1
, [𝑎𝑖2𝑗

2 ]
(𝑚2+1)×𝑛1

, ⋯, [𝑎𝑖𝑡𝑗
𝑡 ]

(𝑚𝑡+1)×𝑛1
 and 

[𝑏𝑖1𝑘
1 ]

(𝑚1+1)×𝑛2
, [𝑏𝑖2𝑘

2 ]
(𝑚2+1)×𝑛2

, ⋯, [𝑏𝑖𝑡𝑘
𝑡 ]

(𝑚𝑡+1)×𝑛2
 

Step 2. Obtain 

[𝑐𝑖1𝑗
1 ] = [𝑎0𝑗

1 𝑎𝑖1𝑗
1 ]

𝑚1×𝑛1
, [𝑐𝑖2𝑗

2 ] = [𝑎0𝑗
2 𝑎𝑖2𝑗

2 ]
𝑚2×𝑛1

, ⋯, [𝑐𝑖𝑡𝑗
𝑡 ] = [𝑎0𝑗

𝑡 𝑎𝑖𝑡𝑗
𝑡 ]

𝑚𝑡×𝑛1
 and 

[𝑑𝑖1𝑘
1 ] = [𝑏0𝑘

1 𝑏𝑖1𝑘
1 ]

𝑚1×𝑛2
, [𝑑𝑖2𝑘

2 ] = [𝑏0𝑘
2 𝑏𝑖2𝑘

2 ]
𝑚2×𝑛2

, ⋯, [𝑑𝑖𝑡𝑘
𝑡 ] = [𝑏0𝑘

𝑡 𝑏𝑖𝑡𝑘
𝑡 ]

𝑚𝑡×𝑛2
 

Step 3. Find AND-product fs-matrices (Çağman and Enginoğlu, 2012) 

[𝑒𝑗𝑝]𝑛1×𝑚1𝑚2…𝑚𝑡
 of [𝑐𝑖1𝑗

1 ]
𝑇
,[𝑐𝑖2𝑗

2 ]
𝑇
, ⋯, [𝑐𝑖𝑡𝑗

𝑡 ]
𝑇
 and [𝑓𝑘𝑝]𝑛2×𝑚1𝑚2…𝑚𝑡

 of [𝑑𝑖1𝑘
1 ]

𝑇
, [𝑑𝑖2𝑘

2 ]
𝑇
, 

⋯, [𝑑𝑖𝑡𝑘
𝑡 ]

𝑇
 such that  𝑝 = (𝑖1 − 1)𝑚2𝑚3…𝑚𝑡 + (𝑖2 − 1)𝑚3𝑚4…𝑚𝑡 +⋯+ 𝑖𝑡 

Step 4. Find AND-product fs-matrices (Çağman and Enginoğlu, 2012) 

[𝑔𝑝𝑣]𝑚1𝑚2…𝑚𝑡×𝑛1𝑛2
 of [𝑒𝑝𝑗]𝑚1𝑚2…𝑚𝑡×𝑛1

 and [𝑓𝑝𝑘]𝑚1𝑚2…𝑚𝑡×𝑛2
 such that  𝑣 =

(𝑗 − 1)𝑛2 + 𝑘 and 

[ℎ𝑝𝑣]𝑚1𝑚2…𝑚𝑡×𝑛1𝑛2
 of [𝑓𝑝𝑘]𝑚1𝑚2…𝑚𝑡×𝑛2

 and [𝑒𝑝𝑗]𝑚1𝑚2…𝑚𝑡×𝑛1
 such that  𝑣 =

(𝑘 − 1)𝑛1 + 𝑗 

Step 5. Obtain [𝑥𝑝1]𝑚1𝑚2…𝑚𝑡×1
 defined by 

𝑥𝑝1 ≔ max
𝑘
{
min
𝑣∈𝐼𝑘

(𝑔𝑝𝑣), 𝐽𝑘 ≠ ∅

0, 𝐽𝑘 = ∅
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such that 𝐽𝑘 ≔ {𝑣 | ∃𝑝, 𝑔𝑝𝑣 ≠ 0, (𝑘 − 1)𝑛2 < 𝑣 ≤ 𝑘𝑛2}, 𝑝 ∈ 𝐼𝑚1𝑚2…𝑚𝑡
, and 𝑘 ∈ 𝐼𝑛1 

Step 6. Obtain [𝑦𝑝1]𝑚1𝑚2…𝑚𝑡×1
 defined by  

𝑦𝑝1 ≔ max
𝑡
{
min
𝑣∈𝐽𝑡

(ℎ𝑝𝑣), 𝐽𝑡 ≠ ∅

0, 𝐽𝑡 = ∅
 

such that 𝐽𝑡 ≔ {𝑣 | ∃𝑝, ℎ𝑝𝑣 ≠ 0, (𝑡 − 1)𝑛1 < 𝑣 ≤ 𝑡𝑛1}, 𝑝 ∈ 𝐼𝑚1𝑚2…𝑚𝑡
, and 𝑡 ∈ 𝐼𝑛2 

Step 7. Obtain the score matrix [𝑠𝑝1]𝑚1𝑚2…𝑚𝑡×1
 defined by 𝑠𝑝1 ≔ max{𝑥𝑝1, 𝑦𝑝1} such 

that  𝑝 ∈ 𝐼𝑚1𝑚2…𝑚𝑡
, 𝑝 = (𝑘1 − 1)𝑚2𝑚3…𝑚𝑡 + (𝑘2 − 1)𝑚3𝑚4…𝑚𝑡 +⋯+ 𝑘𝑡, and 

(𝑢𝑘1 , 𝑢𝑘2 , ⋯ , 𝑢𝑡) ∈ 𝑈1×𝑈2×⋯×𝑈𝑡 

Step 8. Obtain the decision set { 𝑢𝑘 
𝑠̂𝑘1 |𝑢𝑘 = (𝑢𝑘1 , 𝑢𝑘2 , ⋯ , 𝑢𝑡)} 

Here, the notation aa in KAS18aa and KAS18aa/2 indicates that AND-product is used in 

the methods two times. KAS18 and KAS18/2 employ two of AND-product, OR-product, 

ANDNOT-product, ORNOT-product etc. If the methods use AND-product firstly and 

OR-product secondly, then the methods are denoted KAS18ao and KAS18ao/2. 

4. Results of Test Cases 

This section tests the configured SDM methods using five test cases provided in 

(Enginoğlu et al., 2021). Test cases are based on five situations in which an expert can 

naturally rank alternatives. If an SDM method produces the ranking order provided in a 

test case, it is said to accomplish the test case. Table 4 shows in which test cases the 

methods are successful. For example, while P18 pass in all the tests cases, PS18 only in 

Test Case 1, 2, and 5. For more details about the test cases, see (Enginoğlu et al., 2021). 

In these test cases, the methods employing a single matrix work with the first fpfs-

matrices in each test case. Similarly, the methods utilising double matrices employ the 

first two fpfs-matrices. Furthermore, the other methods utilise all the fpfs-matrices 

(Enginoğlu et al., 2021). Table 4 shows that 18 of 30 methods, namely EC17(𝜆), 

G17(𝑅), LQP17(𝑤), RH17, AKO18a, AKO18o, AT18(𝜆), LL18(𝜆), P18, RH18, 

A19(𝑅, 𝑤, 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5), A19/2(𝑅), SS19/2, SS19/3, SS19/4, SS19/5(𝑤), 

ZCW19(𝛿, 𝜃), and ZZ19(𝜆, 𝛾), pass all the tests. Moreover, the numbers of the passed 

tests are provided in the last column of Table 4.  
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Table 4. Success of the methods in the test cases 

 Algorithms\Test Cases 
Test 

Case 1 

Test 

Case 2 

Test 

Case 3 

Test 

Case 4 

Test 

Case 5 

Passed 

Test’s 

Numbers 

1.  AM17(∅, ∅, ∅) ✓ ✓   ✓ 3 

2.  AM17/2(∅, ∅, ∅) ✓ ✓   ✓ 3 

3.  AM17/3(5, ∅, ∅, ∅) ✓ ✓   ✓ 3 

4.  AM17/4(5, ∅, ∅, ∅) ✓ ✓   ✓ 3 

5.  AM17/5(5, ∅, ∅, ∅) ✓ ✓   ✓ 3 

6.  AM17/6(5, ∅, ∅, ∅) ✓ ✓   ✓ 3 

7.  EC17(0.5) ✓ ✓ ✓ ✓ ✓ 5 

8.  G17(𝐼4) ✓ ✓ ✓ ✓ ✓ 5 

9.  LQP17([1 1 1 1]) ✓ ✓ ✓ ✓ ✓ 5 

10.  RH17 ✓ ✓ ✓ ✓ ✓ 5 

11.  AKO18a ✓ ✓ ✓ ✓ ✓ 5 

12.  AKO18o ✓ ✓ ✓ ✓ ✓ 5 

13.  AT18(0.95) ✓ ✓ ✓ ✓ ✓ 5 

14.  LL18(0.5) ✓ ✓ ✓ ✓ ✓ 5 

15.  P18 ✓ ✓ ✓ ✓ ✓ 5 

16.  PS18 ✓ ✓   ✓ 3 

17.  RH18 ✓ ✓ ✓ ✓ ✓ 5 

18.  RHF18     ✓ 1 

19.  X18 ✓ ✓   ✓ 3 

20.  X18/2 ✓ ✓   ✓ 3 

21.  A19(𝐼4, [0.4 0.4 0.4 0.4], 1, 1, 1, 1, 2) ✓ ✓ ✓ ✓ ✓ 5 

22.  A19/2(𝐼64) ✓ ✓ ✓ ✓ ✓ 5 

23.  SS19     ✓ 1 

24.  SS19/2 ✓ ✓ ✓ ✓ ✓ 5 

25.  SS19/3 ✓ ✓ ✓ ✓ ✓ 5 

26.  SS19/4 ✓ ✓ ✓ ✓ ✓ 5 

27.  

SS19/5([0.25 0.25 0.25 0.25]) (Test 1,2,5) 

SS19/5([0.1818 0.2272 0.2727 0.3181]) (Test 3) 

SS19/5([0.3181 0.2727 0.2272 0.1818]) (Test 4) 

✓ ✓ ✓ ✓ ✓ 5 

28.  WQ19  ✓ ✓ ✓ ✓ 4 

29.  ZCW19([
1

3
 
1

3
 
1

3
] , [

1

3
 
1

3
 
1

3
]) ✓ ✓ ✓ ✓ ✓ 5 

30.  

ZZ19(0.5, [0.35 0.45 0.55 0.65]𝑇) (Test 1) 

ZZ19(0.5, [0.65 0.55 0.45 0.35]𝑇) (Test 2) 

ZZ19(0.5, [0.25 0.25 0.25 0.25]𝑇) (Test 3, 4) 

ZZ19(0.5, [0.5 0.5 0.5 0.5]𝑇) (Test 5) 

✓ ✓ ✓ ✓ ✓ 5 

 Total 27 28 19 19 30 18 (5) 
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5. An Application of Some of the Configured Methods to a PVA Problem 

This section ranks the noise-removal filters provided in (Erkan and Gökrem, 2018; 

Srinivasan and Ebenezer, 2007; Esakkirajan et al., 2012; Toh and  Isa, 2010; Tang et al., 

2016; Erkan et al., 2018; Enginoğlu et al., 2019a), obtained by the configured methods 

herein. Therefore, firstly, we present the results of the filters in (Enginoğlu et al., 2019a) 

produced by the quality metrics Peak Signal-to-Noise Ratio (PSNR), Structural 

Similarity (SSIM) (Wang et al., 2004), and Visual Information Fidelity (VIF) (Sheikh 

and Bovik, 2006) for 20 traditional images at noise density occurring between 10% and 

90% in Table 5, 6, and 7, respectively. Moreover, the bold values in the tables signify 

the filters with the best performance. 

Table 5. Mean-PSNR results for the 20 traditional images with different noise densities 

Filters/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

BPDF 36.98 33.54 31.03 28.88 26.82 24.60 21.98 17.74 10.51 

DBAIN 37.52 34.29 31.96 29.83 27.86 25.89 23.90 21.55 18.55 

MDBUTMF 36.80 32.18 29.02 28.48 28.81 28.34 26.95 23.42 15.29 

NAFSMF 36.08 33.27 31.49 30.15 29.02 27.96 26.82 25.47 22.34 

DAMF 39.58 36.33 34.14 32.45 30.99 29.64 28.28 26.69 24.35 

AWMF 36.34 35.00 33.83 32.69 31.47 30.14 28.68 26.99 24.70 

ARmF 40.04 37.12 35.14 33.53 31.99 30.45 28.86 27.08 24.74 

 

Table 6. Mean-SSIM results for the 20 traditional images with different noise densities 

Filters/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

BPDF 0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585 

DBAIN 0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966 

MDBUTMF 0.9774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566 

NAFSMF 0.9748 0.9504 0.9248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190 

DAMF 0.9854 0.9699 0.9516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964 

AWMF 0.9728 0.9622 0.9484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028 

ARmF 0.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056 

 

Table 7. Mean-VIF results for the 20 traditional images with different noise densities 

Filters/Noise Densities 10% 20% 30% 40% 50% 60% 70% 80% 90% 

BPDF 0.8188 0.6858 0.5659 0.4564 0.3529 0.2541 0.1614 0.0783 0.0334 

DBAIN 0.8548 0.7319 0.6179 0.5119 0.4095 0.3128 0.2229 0.1365 0.0635 

MDBUTMF 0.8272 0.6713 0.5044 0.4420 0.4310 0.3978 0.3302 0.2212 0.0730 

NAFSMF 0.7902 0.6751 0.5828 0.5030 0.4307 0.3604 0.2897 0.2129 0.1226 

DAMF 0.8787 0.7816 0.6943 0.6162 0.5437 0.4731 0.3998 0.3096 0.1913 

AWMF 0.7896 0.7366 0.6789 0.6181 0.5533 0.4833 0.4066 0.3129 0.1928 

ARmF 0.8832 0.7975 0.7210 0.6474 0.5741 0.4974 0.4158 0.3182 0.1955 
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In this PVA problem, the alternatives are indicated as 𝑢1 ≔ “BPDF”, 𝑢2 ≔ “DBAIN”, 

𝑢3 ≔ “MDBUTMF”, 𝑢4 ≔ “NAFSMF”, 𝑢5 ≔ “DAMF”, 𝑢6 ≔ “AWMF”, and 𝑢7 ≔ 

“ARmF” such that 𝑈 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7}. Moreover, the parameters are denoted 

by 𝑥1 ≔ “SPN ratio 10%”, 𝑥2 ≔ “SPN ratio 20%”, 𝑥3 ≔ “SPN ratio 30%”, 𝑥4 ≔ “SPN 

ratio 40%”, 𝑥5 ≔ “SPN ratio 50%”, 𝑥6 ≔ “SPN ratio 60%”, 𝑥7 ≔ “SPN ratio 70%”, 

𝑥8 ≔ “SPN ratio 80%”, and 𝑥9 ≔ “SPN ratio 90%” such that 𝐸 =
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9}.  

Suppose that the noise removal performances of the filters at high noise densities are 

more significant than at the other densities. In such a case, it is anticipated that the 

membership degrees at high noise densities are greater than at the other noise densities. 

In other words, the first rows of the fpfs-matrices are considered to be 

[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9] herein. Furthermore, while the SSIM and VIF 

values are in the interval [0,1], the PSNR values are not. Hence, the PSNR values are 

normalised via the maximum value provided in Table 5 to construct the fpfs-matrix [𝑎𝑖𝑗]. 

Thus, Table 5, 6, and 7 can be represented with fpfs-matrices [𝑎𝑖𝑗]8×9, [𝑏𝑖𝑗]8×9, and 

[𝑐𝑖𝑗]8×9 as follows: 

[𝑎𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
 
 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9236 0.8377 0.7750 0.7213 0.6698 0.6144 0.5490 0.4431 0.2625

0.9371 0.8564 0.7982 0.7450 0.6958 0.6466 0.5969 0.5382 0.4633

0.9191 0.8037 0.7248 0.7113 0.7195 0.7078 0.6731 0.5849 0.3819

0.9011 0.8309 0.7865 0.7530 0.7248 0.6983 0.6698 0.6361 0.5579

0.9885 0.9073 0.8526 0.8104 0.7740 0.7403 0.7063 0.6666 0.6081

0.9076 0.8741 0.8449 0.8164 0.7860 0.7527 0.7163 0.6741 0.6169

1.0000 0.9271 0.8776 0.8374 0.7990 0.7605 0.7208 0.6763 0.6179]
 
 
 
 
 
 
 
 
 
 

 

 

[𝑏𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
 
 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585

0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966

0.9774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566

0.9748 0.9504 0.9248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190

0.9854 0.9699 0.9516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964

0.9728 0.9622 0.9484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028

0.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056]
 
 
 
 
 
 
 
 
 
 

 

and 
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[𝑐𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
 
 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8188 0.6858 0.5659 0.4564 0.3529 0.2541 0.1614 0.0783 0.0334

0.8548 0.7319 0.6179 0.5119 0.4095 0.3128 0.2229 0.1365 0.0635

0.8272 0.6713 0.5044 0.4420 0.4310 0.3978 0.3302 0.2212 0.0730

0.7902 0.6751 0.5828 0.5030 0.4307 0.3604 0.2897 0.2129 0.1226

0.8787 0.7816 0.6943 0.6162 0.5437 0.4731 0.3998 0.3096 0.1913

0.7896 0.7366 0.6789 0.6181 0.5533 0.4833 0.4066 0.3129 0.1928

0.8832 0.7975 0.7210 0.6474 0.5741 0.4974 0.4158 0.3182 0.1955]
 
 
 
 
 
 
 
 
 
 

 

Eight of the SDM methods having passed all the test cases, namely G17(𝐼9), LQP17([1 

1 1 1 1 1 1 1 1]), LL18(0.5), A19(𝐼9, [0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4], 1, 1, 1, 1, 2), 

and ZZ19(0.5, [0.6440  0.6975  0.6918  0.7287  0.7838  0.7766  0.8018]T), employ only 

an fpfs-matrix. Similarly, RH17, AKO18a, AKO18o, and RH18 utilise two fpfs-matrices, 

and EC17(0.5), AT18(0.05), P18, A19/2(𝐼729), SS19/2, SS19/3, SS19/4, SS19/5([0.0222 

0.0444 0.0667 0.0889 0.1111 0.1333 0.1556 0.1778 0.2000]), and ZCW19([1/3 1/3 1/3], 

[1/3 1/3 1/3]) work with multiple fpfs-matrices. 

Secondly, we apply the SDM methods to the aforesaid fpfs-matrices [𝑎𝑖𝑗]8×9, [𝑏𝑖𝑗]8×9, 

and [𝑐𝑖𝑗]8×9. The decision sets and ranking orders produced by these SDM methods are 

manifested in Table 8 and 9, respectively. The last column in Table 9 shows the number 

of the methods producing the same ranking order. The results provided in Table 8 are 

obtained by MATLAB R2020b using the aforesaid fpfs-matrices. 

Table 8. Decision sets produced by SDM methods (in the event of more-importance-

attached noise removal performance at high noise densities) 

Algorithms Matrices Decision Sets 

G17(𝐼9) [𝑎𝑖𝑗] { BPDF 
0 , DBAIN 

0.3904 , MDBUTMF, 
0.4110 NAFSMF 

0.6751 , DAMF 
0.9152 , AWMF 

0.9376 , ARmF 
1 }  

LQP17([1 1 1 1 1 1 1 1 1]) [𝑎𝑖𝑗] { BPDF 
0 , DBAIN 

0.3904 , MDBUTMF, 
0.4110 NAFSMF 

0.6751 , DAMF 
0.9152 , AWMF 

0.9376 , ARmF 
1 }  

LL18(0.5) [𝑎𝑖𝑗] { BPDF 
0 , DBAIN 

0.4464 , MDBUTMF, 
0.4054 NAFSMF 

0.7352 , DAMF 
0.9273 , AWMF 

0.9305 , ARmF 
1 }  

A19(𝐼9, [0.4 0.4 0.4 0.4 0.4 0.4 

0.4 0.4 0.4], 1, 1, 1, 1, 2) 
[𝑎𝑖𝑗] { BPDF 

0 , DBAIN 
0.1118 , MDBUTMF, 

0.0266 NAFSMF 
0.3943 , DAMF 

0.8381 , AWMF 
0.9731 , ARmF 

1 }  

ZZ19(0.5, [0.6440 0.6975 

0.6918 0.7287 0.7838 

0.7766 0.8018]T) 

[𝑎𝑖𝑗] { BPDF 
0 , DBAIN 

0.3388 , MDBUTMF, 
0.3026 NAFSMF 

0.5365 , DAMF 
0.8856 , AWMF 

0.8397 , ARmF 
1 }  

RH17 [𝑎𝑖𝑗], [𝑏𝑖𝑗] { BPDF 
0 , DBAIN 

0.3941 , MDBUTMF, 
0.3715 NAFSMF 

0.6784 , DAMF 
0.9287 , AWMF 

0.9463 , ARmF 
1 }  

AKO18a [𝑎𝑖𝑗], [𝑏𝑖𝑗] { BPDF 
0.3230 , DBAIN 

0.6830 , MDBUTMF, 
0 NAFSMF 

0.4536 , DAMF 
0.9728 , AWMF 

0.5026 , ARmF 
1 }  

AKO18o [𝑎𝑖𝑗], [𝑏𝑖𝑗] { BPDF 
0 , DBAIN 

0.2219 , MDBUTMF, 
0.5604 NAFSMF 

0.7193 , DAMF 
0.9520 , AWMF 

0.9807 , ARmF 
1 }  

RH18 [𝑎𝑖𝑗], [𝑏𝑖𝑗] { BPDF 
0 , DBAIN 

0.4242 , MDBUTMF, 
0.3926 NAFSMF 

0.7137 , DAMF 
0.9384 , AWMF 

0.9581 , ARmF 
1 }  

EC17(0.5) [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { BPDF 
0 , DBAIN 

0.3234 , MDBUTMF, 
0.2366 NAFSMF 

0.4325 , DAMF 
0.8968 , AWMF 

0.8261 , ARmF 
1 }  

AT18(0.05) [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { BPDF 
0 , DBAIN 

0.4073 , MDBUTMF, 
0.4180 NAFSMF 

0.7009 , DAMF 
0.9244 , AWMF 

0.9504 , ARmF 
1 }  

P18 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { BPDF 
0.7430 , DBAIN 

0.8280 , MDBUTMF, 
0.8356 NAFSMF 

0.8867 , DAMF 
0.9782 , AWMF 

0.9796 , ARmF 
1 }  
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Algorithms Matrices Decision Sets 

A19/2(𝐼729) [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { BPDF 
0 , DBAIN 

0.1610 , MDBUTMF, 
0.4178 NAFSMF 

0.4396 , DAMF 
0.8899 , AWMF 

0.9494 , ARmF 
1 }  

SS19/2 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { BPDF 
0 , DBAIN 

0.3440 , MDBUTMF, 
0.4016 NAFSMF 

0.6020 , DAMF 
0.9258 , AWMF 

0.9423 , ARmF 
1 }  

SS19/3 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { BPDF 
0 , DBAIN 

0.3678 , MDBUTMF, 
0.3892 NAFSMF 

0.6355 , DAMF 
0.9357 , AWMF 

0.9522 , ARmF 
1 }  

SS19/4 [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { BPDF 
0 , DBAIN 

0.3260 , MDBUTMF, 
0.3535 NAFSMF 

0.5379 , DAMF 
0.9115 , AWMF 

0.9046 , ARmF 
1 }  

SS19/5([0.0222 0.0444 0.0667 

0.0889 0.1111 0.1333 

0.1556 0.1778 0.2000]) 

[𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { BPDF 
0 , DBAIN 

0.3536 , MDBUTMF, 
0.3830 NAFSMF 

0.6089 , DAMF 
0.9280 , AWMF 

0.9414 , ARmF 
1 }  

ZCW19([
𝟏

𝟑
 
𝟏

𝟑
 
𝟏

𝟑
] , [

𝟏

𝟑
 
𝟏

𝟑
 
𝟏

𝟑
]) [𝑎𝑖𝑗], [𝑏𝑖𝑗], [𝑐𝑖𝑗] { BPDF 

0 , DBAIN 
0.3523 , MDBUTMF, 

0.3832 NAFSMF 
0.6067 , DAMF 

0.9278 , AWMF 
0.9411 , ARmF 

1 }  

The ranking orders in Table 9 demonstrate that the ranking orders of G17(𝐼9), LQP17([1 

1 1 1 1 1 1 1 1]), AKO18o, AT18(0.05), P18, A19/2(𝐼729), SS19/2, SS19/3, 

SS19/5([0.0222 0.0444 0.0667 0.0889 0.1111 0.1333 0.1556 0.1778 0.2000]), and 

ZCW19([
1

3
 
1

3
 
1

3
] , [

1

3
 
1

3
 
1

3
]) are the same.  

Moreover, LL18(0.5), A19(𝐼9, [0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4], 1, 1, 1, 1, 2), RH17, 

and RH18 produces the same ranking orders just as ZZ19(0.5, [0.6440 0.6975 0.6918 

0.7287 0.7838 0.7766 0.8018]T) and EC17(0.5) do. On the other hands, the ranking order 

of AKO18a is more incoherent than the others.  

The results manifest that the decision-making skills of the SDM methods herein are 

almost the same except AKO18a, and they agree that ARmF performs better than the 

other filters according to their SPN removal performance. Furthermore, the SDM 

methods except AKO18a agree that BPDF displays the minimum SPN removal 

performance compared to the others. 

Table 9. Ranking orders produced by SDM methods (in the event of more-importance-

attached noise removal performance at high noise densities) 

Algorithms Ranking Orders Frequency 

G17(𝐼9) BPDF≺DBAIN≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 10 

LQP17([1 1 1 1 1 1 1 1 1]) BPDF≺DBAIN≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 10 

LL18(0.5) BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺DAMF≺AWMF≺ARmF 4 

A19(𝐼9, [0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

0.4], 1, 1, 1, 1, 2) 
BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺DAMF≺AWMF≺ARmF 4 

ZZ19(0.5, [0.6440 0.6975 0.6918 

0.7287 0.7838 0.7766 0.8018]T) 
BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 2 

RH17 BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺DAMF≺AWMF≺ARmF 4 

AKO18a MDBUTMF≺BPDF≺NAFSMF≺AWMF≺DBAIN≺DAMF≺ARmF 1 

AKO18o BPDF≺DBAIN≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 10 

RH18 BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺DAMF≺AWMF≺ARmF 4 

EC17(0.5) BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 2 
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Algorithms Ranking Orders Frequency 

AT18(0.05) BPDF≺DBAIN≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 10 

P18 BPDF≺DBAIN≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 10 

A19/2(𝐼729) BPDF≺DBAIN≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 10 

SS19/2 BPDF≺DBAIN≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 10 

SS19/3 BPDF≺DBAIN≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 10 

SS19/4 BPDF≺DBAIN≺MDBUTMF≺NAFSMF≺AWMF≺DAMF≺ARmF 1 

SS19/5([0.0222 0.0444 0.0667 0.0889 

0.1111 0.1333 0.1556 0.1778 0.2000]) 
BPDF≺DBAIN≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 10 

ZCW19([
𝟏

𝟑
 
𝟏

𝟑
 
𝟏

𝟑
] , [

𝟏

𝟑
 
𝟏

𝟑
 
𝟏

𝟑
]) BPDF≺DBAIN≺MDBUTMF≺NAFSMF≺DAMF≺AWMF≺ARmF 10 

On the other hand, assume that the noise removal performances of the filters at low noise 

densities are more significant than at the higher densities. In such a case, it is anticipated 

that the membership degrees at low noise densities are greater than at the higher noise 

densities. In other words, the first rows of the fpfs-matrices are considered to be 

[0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1] herein. Therefore, Table 5, 6, and 7 can be 

represented with fpfs-matrices [𝑑𝑖𝑗]8×9, [𝑒𝑖𝑗]8×9, and [𝑓𝑖𝑗]8×9 as follows: 

[𝑑𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
 
 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.9236 0.8377 0.7750 0.7213 0.6698 0.6144 0.5490 0.4431 0.2625

0.9371 0.8564 0.7982 0.7450 0.6958 0.6466 0.5969 0.5382 0.4633

0.9191 0.8037 0.7248 0.7113 0.7195 0.7078 0.6731 0.5849 0.3819

0.9011 0.8309 0.7865 0.7530 0.7248 0.6983 0.6698 0.6361 0.5579

0.9885 0.9073 0.8526 0.8104 0.7740 0.7403 0.7063 0.6666 0.6081

0.9076 0.8741 0.8449 0.8164 0.7860 0.7527 0.7163 0.6741 0.6169

1.0000 0.9271 0.8776 0.8374 0.7990 0.7605 0.7208 0.6763 0.6179]
 
 
 
 
 
 
 
 
 
 

 

 

[𝑒𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
 
 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.9783 0.9536 0.9229 0.8838 0.8323 0.7634 0.6680 0.5096 0.2585

0.9796 0.9584 0.9315 0.8968 0.8520 0.7949 0.7213 0.6265 0.4966

0.9774 0.9197 0.8117 0.7973 0.8399 0.8410 0.8025 0.7023 0.3566

0.9748 0.9504 0.9248 0.8973 0.8666 0.8320 0.7910 0.7357 0.6190

0.9854 0.9699 0.9516 0.9303 0.9051 0.8748 0.8368 0.7846 0.6964

0.9728 0.9622 0.9484 0.9315 0.9098 0.8816 0.8437 0.7904 0.7028

0.9868 0.9735 0.9581 0.9400 0.9173 0.8880 0.8491 0.7947 0.7056]
 
 
 
 
 
 
 
 
 
 

 

and 
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[𝑓𝑖𝑗] ≔

[
 
 
 
 
 
 
 
 
 
 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.8188 0.6858 0.5659 0.4564 0.3529 0.2541 0.1614 0.0783 0.0334

0.8548 0.7319 0.6179 0.5119 0.4095 0.3128 0.2229 0.1365 0.0635

0.8272 0.6713 0.5044 0.4420 0.4310 0.3978 0.3302 0.2212 0.0730

0.7902 0.6751 0.5828 0.5030 0.4307 0.3604 0.2897 0.2129 0.1226

0.8787 0.7816 0.6943 0.6162 0.5437 0.4731 0.3998 0.3096 0.1913

0.7896 0.7366 0.6789 0.6181 0.5533 0.4833 0.4066 0.3129 0.1928

0.8832 0.7975 0.7210 0.6474 0.5741 0.4974 0.4158 0.3182 0.1955]
 
 
 
 
 
 
 
 
 
 

 

Thirdly, we apply the SDM methods to the fpfs-matrices [𝑑𝑖𝑗]8×9, [𝑒𝑖𝑗]8×9, and [𝑓𝑖𝑗]8×9. 

The decision sets and ranking orders generated by the SDM methods are provided in 

Table 10 and 11, respectively. The last column in Table 11 shows the number of the 

methods producing the same ranking order. The results provided in Table 10 are obtained 

by MATLAB R2020b using the last-mentioned fpfs-matrices. 

Table 10. Decision sets produced by SDM methods (in the event of more-importance-

attached noise removal performance at low noise densities) 

Algorithms Matrices Decision Sets 

G17(𝐼9) [𝑑𝑖𝑗] { BPDF 
0 , DBAIN 

0.2543 , MDBUTMF, 
0.1251 NAFSMF 

0.3098 , DAMF 
0.8371 , AWMF 

0.6796 , ARmF 
1 } 

LQP17([1 1 1 1 1 1 1 1 1]) [𝑑𝑖𝑗] { BPDF 
0 , DBAIN 

0.2543 , MDBUTMF, 
0.1251 NAFSMF 

0.3098 , DAMF 
0.8371 , AWMF 

0.6796 , ARmF 
1 } 

LL18(0.5) [𝑑𝑖𝑗] { BPDF 
0 , DBAIN 

0.2326 , MDBUTMF, 
0.1246 NAFSMF 

0.2875 , DAMF 
0.8175 , AWMF 

0.5752 , ARmF 
1 } 

A19(𝐼9, [0.4 0.4 0.4 0.4 0.4 0.4 

0.4 0.4 0.4], 1, 1, 1, 1, 2) 
[𝑑𝑖𝑗] { BPDF 

0.0201 , DBAIN 
0.0453 , MDBUTMF, 

0.0144 NAFSMF 
0 , DAMF 

0.5978 , AWMF 
0.0042 , ARmF 

1 } 

ZZ19(0.5, [0.6440 0.6975 0.6918 

0.7287 0.7838 0.7766 0.8018]T) 
[𝑑𝑖𝑗] { BPDF 

0 , DBAIN 
0.3388 , MDBUTMF, 

0.3026 NAFSMF 
0.5365 , DAMF 

0.8856 , AWMF 
0.8397 , ARmF 

1 } 

RH17 [𝑑𝑖𝑗], [𝑒𝑖𝑗] { BPDF 
0.0369 , DBAIN 

0.2986 , MDBUTMF, 
0 NAFSMF 

0.3738 , DAMF 
0.8649 , AWMF 

0.7381 , ARmF 
1 } 

AKO18a [𝑑𝑖𝑗], [𝑒𝑖𝑗] { BPDF 
0 , DBAIN 

0.5283 , MDBUTMF, 
0.2695 NAFSMF 

0.8046 , DAMF 
0.9792 , AWMF 

0.9937 , ARmF 
1 } 

AKO18o [𝑑𝑖𝑗], [𝑒𝑖𝑗] { BPDF 
0.2022 , DBAIN 

0.2500 , MDBUTMF, 
0.1691 NAFSMF 

0.0735 , DAMF 
0.5772 , AWMF 

0 , ARmF 
1 } 

RH18 [𝑑𝑖𝑗], [𝑒𝑖𝑗] { BPDF 
0. , DBAIN 

0.2872 , MDBUTMF, 
0.0347 NAFSMF 

0.3974 , DAMF 
0.8674 , AWMF 

0.7635 , ARmF 
1 } 

EC17(0.5) [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { BPDF 
0 , DBAIN 

0.3234 , MDBUTMF, 
0.2366 NAFSMF 

0.4325 , DAMF 
0.8968 , AWMF 

0.8261 , ARmF 
1 } 

AT18(0.05) [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { BPDF 
0 , DBAIN 

0.2683 , MDBUTMF, 
0.1623 NAFSMF 

0.3639 , DAMF 
0.8469 , AWMF 

0.7272 , ARmF 
1 } 

P18 [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { BPDF 
0.8722 , DBAIN 

0.9091 , MDBUTMF, 
0.8766 NAFSMF 

0.9041 , DAMF 
0.9823 , AWMF 

0.9595 , ARmF 
1 } 

A19/2(𝐼729) [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { BPDF 
0.2577 , DBAIN 

0.5105 , MDBUTMF, 
0.2761 NAFSMF 

0 , DAMF 
0.9119 , AWMF 

0.0171 , ARmF 
1 } 

SS19/2 [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { BPDF 
0 , DBAIN 

0.2988 , MDBUTMF, 
0.1558 NAFSMF 

0.3640 , DAMF 
0.8787 , AWMF 

0.7807 , ARmF 
1 } 

SS19/3 [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { BPDF 
0 , DBAIN 

0.3031 , MDBUTMF, 
0.1765 NAFSMF 

0.3869 , DAMF 
0.8829 , AWMF 

0.7975 , ARmF 
1 } 

SS19/4 [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { BPDF 
0 , DBAIN 

0.2921 , MDBUTMF, 
0.0326 NAFSMF 

0.1840 , DAMF 
0.8614 , AWMF 

0.5875 , ARmF 
1 } 

SS19/5([0.0222 0.0444 0.0667 

0.0889 0.1111 0.1333 

0.1556 0.1778 0.2000]) 

[𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { BPDF 
0 , DBAIN 

0.2929 , MDBUTMF, 
0.0988 NAFSMF 

0.3117 , DAMF 
0.8700 , AWMF 

0.7384 , ARmF 
1 } 

ZCW19([
𝟏

𝟑
 
𝟏

𝟑
 
𝟏

𝟑
] , [

𝟏

𝟑
 
𝟏

𝟑
 
𝟏

𝟑
]) [𝑑𝑖𝑗], [𝑒𝑖𝑗], [𝑓𝑖𝑗] { BPDF 

0 , DBAIN 
0.2930 , MDBUTMF, 

0.0990 NAFSMF 
0.3115 , DAMF 

0.8701 , AWMF 
0.7384 , ARmF 

1 } 
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The ranking orders in Table 11 manifest that G17(𝐼9), LQP17([1 1 1 1 1 1 1 1 1]), 

LL18(0.5), ZZ19(0.5, [0.6440 0.6975 0.6918 0.7287 0.7838 0.7766 0.8018]T), AKO18a, 

RH18, EC17(0.5), AT18(0.05), SS19/2, SS19/3, SS19/5([0.0222 0.0444 0.0667 0.0889 

0.1111 0.1333 0.1556 0.1778 0.2000]), and ZCW19([
1

3
 
1

3
 
1

3
] , [

1

3
 
1

3
 
1

3
]) produce the same 

ranking orders. Besides, the ranking orders of P18 and SS19/4 are the same. On the other 

hands, A19(𝐼9, [0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4], 1, 1, 1, 1, 2), RH17, AKO18o, and 

A19/2(𝐼729) generate the unordinary ranking orders compared to the others. Moreover, 

all the SDM methods herein indicate that ARmF outperforms the other SPN filters and 

BPDF has the minimum SPN removal performance according to all the SDM methods’ 

ranking orders apart from A19(𝐼9, [0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4], 1, 1, 1, 1, 2), 

RH17, AKO18o, and A19/2(𝐼729). 

Table 11. Ranking orders produced by SDM methods (in the event of more-

importance-attached noise removal performance at low noise densities) 

Algorithms Ranking Orders Frequency 

G17(𝐼9) BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 12 

LQP17([1 1 1 1 1 1 1 1 1]) BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 12 

LL18(0.5) BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 12 

A19(𝐼9, [0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

0.4], 1, 1, 1, 1, 2) 
NAFSMF≺AWMF≺MDBUTMF≺BPDF≺DBAIN≺DAMF≺ARmF 1 

ZZ19(0.5, [0.6440 0.6975 0.6918 

0.7287 0.7838 0.7766 0.8018]T) 
BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 12 

RH17 MDBUTMF≺BPDF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 1 

AKO18a BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 12 

AKO18o AWMF≺NAFSMF≺MDBUTMF≺BPDF≺DBAIN≺DAMF≺ARmF 1 

RH18 BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 12 

EC17(0.5) BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 12 

AT18(0.05) BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 12 

P18 BPDF≺MDBUTMF≺NAFSMF≺DBAIN≺AWMF≺DAMF≺ARmF 2 

A19/2(𝐼729) NAFSMF≺AWMF≺BPDF≺MDBUTMF≺DBAIN≺DAMF≺ARmF 1 

SS19/2 BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 12 

SS19/3 BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 12 

SS19/4 BPDF≺MDBUTMF≺NAFSMF≺DBAIN≺AWMF≺DAMF≺ARmF 2 

SS19/5([0.0222 0.0444 0.0667 0.0889 

0.1111 0.1333 0.1556 0.1778 0.2000]) 
BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 12 

ZCW19([
𝟏

𝟑
 
𝟏

𝟑
 
𝟏

𝟑
] , [

𝟏

𝟑
 
𝟏

𝟑
 
𝟏

𝟑
]) BPDF≺MDBUTMF≺DBAIN≺NAFSMF≺AWMF≺DAMF≺ARmF 12 
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6. Conclusion 

The present study configured SDM methods propounded with the concepts of soft sets, 

fuzzy soft sets, fpfs-sets, soft matrices, and fuzzy soft matrices to the fpfs-matrices space, 

faithfully to the original. Thus, this paper completed the configurations of the methods 

proposed via these concepts in 2017-2019. Then, the configured methods were applied 

to five test cases. Hereby, the methods producing valid ranking orders for all the test 

cases were determined. Afterwards, they were applied to a PVA problem to order the 

well-known filters concerning their noise-removal performance. 

This study excluded SDM methods proposed by the superstructures of fpfs-sets/matrices. 

Therefore, in the next studies, researchers can also focus on their configurations to be 

able to operate methods, constructed via these superstructures, in the appropriate spaces, 

such as intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices space 

(Enginoğlu and Arslan, 2020) and interval-valued intuitionistic fuzzy parameterized 

interval-valued intuitionistic fuzzy soft sets/matrices space (Aydın and Enginoğlu, 2021; 

Aydın, 2021). Moreover, it is now possible to compare all the SDM methods operated in 

fpfs-matrices spaces and apply them to different fields, such as machine learning (Memiş 

et al., 2019; Memiş and Enginoğlu, 2019) and archaeology (Enginoğlu et al., 2019b). 

For more details about similar studies, see (Enginoğlu and Memiş, 2018b, c, d; Enginoğlu 

et al., 2018a, b, c, d; Enginoğlu et al., 2019c, d; Enginoğlu and Memiş, 2020). 
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