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Abstract In this paper, we explain the rumor spreader model with a differential equation 

system and analyses and consider this system in dynamical system view. The model 

which we consider in a society contains ignoring, spreading, stifle and controlling 

factors. In this work, we study on a new rumor spreading model, Ignorant-Spreader-

Stifler-Controller (ISRC) model, is developed. The model extends the classical Ignorant-

Spreader-Stifler (ISR) rumor spreading model by adding a new kind of people that spread 

a new rumor against previous rumor to control and reduce the maximum rumor influence. 

The model is an extension of SIR model which has studied before.  In this research, we 

give a dynamical system which explains SIRC dynamical factors. Moreover, we consider 

the equilibrium conditions near the equilibrium point 

Keywords Epidemic model; Rumor spreading; Asymptotic behavior; Numerical      

simulations

 

1. Introduction 

The classical model for the spread of a rumor consists of one of whom, the spreader 

knows a rumor. Those individuals who do not know the rumor are called ignorant. On 

day on the spreader chooses one individual at random, which could be the spreader 

himself to whom to tells the rumor. As noted it may not spread the first day. If an ignorant 

choosen, the spreader tells the rumor and on the next day there are two spreaders. Each 

spreader chooses one person at random (which could be himself, the other spreader, or 

an ignorant) to whom to tell the rumor. This continues until all persons have heard the 

rumor.  

Rumors are an important form of social communications, and their spreading plays a 

significant role in a variety of human affairs Zhang and Zhang (2009).  The spread of 

rumors can shape the public opinion in a country Galam (2003), greatly impact financial 

markets Kimmel (2004) and Kosfeld (2005), social networks Kosmidis and Bunde 
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(2007), and cause panic in a society during wars and epidemics outbreaks.  Traditionally, 

rumors spread on social networks through relationships between different individuals 

which it can produce a small effect on society stability. Nowadays, With the emergence 

of social web and other media, rumors can propagate at a faster velocity and generate 

greater influence on people’s lives. Therefore, understanding the transmission 

mechanisms of rumors and then devising effective measures to suppress their spreading 

are of considerable importance Wang et al. (2014), Thomas (2007) and Bhavnani et al.  

(2009). The mathematical modeling of rumor spreading is an alternate way of evaluating 

agent behaviors. 

The study of the rumor models has had a long history. The spreading of rumor is in very 

similar to the spreading of epidemic infection.  Thus many epidemic models have been 

used to describe the spread of information in the form of rumors. The most popular 

transmission model of rumors was introduced by Daley and Kendall (1964) and 

investigated based on mathematical theory by Maki and Thompson (1973). These models 

have been used extensively for quantitative studies of rumor spreading Pittel (1990), 

Lefevre and Picard (1994) and Gu et al. (2008). A more detailed consideration of the 

models about rumor spreading was given in the literature Huo et al. (2011) and Zhao et 

al. (2011).  Up to now, several rumor propagation models on social networks have been 

well studied.  A rumor spreading model with network medium in complex social 

networks was established by J.  Wang and Y.  Wang (2015) and Zhao and Wang (2013) 

and investigated its dynamic behaviors and numerical simulation. Zanette (2001) and 

Zanette (2002) established a rumor spreading model on small-world networks and 

provided a threshold of rumor spreading. Some scholars studied applications of the 

stochastic version of the classical model for the spread of rumor on scale-free networks 

and showed that the uniformity of the network has a major impact on the dynamic 

mechanism of rumor spreading Moreno et al. (2004a), Moreno et al. (2004b) and Moreno 

et al. (2002). Dietz provides a review of the recent mathematical contributions to the 

description of the spread of epidemics and rumors in the survey paper Dietz (1967) which 

is worth seeing in this connection. 

This paper is organized as follows. We first give a novel ISRC rumor transmission model 

and derive the corresponding mean-field equations in Section 2. In Section 3, we present 

analytical results for the ISRC model. In Section 4, numerical simulation on the dynamics 

results of the ISRC model is investigated to analyze the impact factors under different 

parameters. Conclusions and discussions are given in Section 5.  

2. Model Formulation 

In this section, we introduce and analyses an appropriate dynamical model for rumor 

spreading with controller agent. The total population is partitioned into Ignorant, 

spreaders, stifles, and controllers, respectively, denoted by 𝐼(𝑡), 𝑆(𝑡), 𝑅(𝑡) and 𝐶(𝑡).  

The total population size at time 𝑡 is denoted by 𝑁(𝑡). Our assumptions on the dynamical 

transmission of rumor among humans are demonstrated in the following flowchart: 
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Figure 1.  The transfer diagram of the model (2.1) 

As shown in Figure 1, The ISRC rumor spreading rules can be summarized as follows 

1. When an ignorant contacts a spreader, the ignorant becomes a spreader with 

probability 𝜃1𝛼 or a stifler with probability (1 − 𝜃1)𝛼 . 

2. When an ignorant contacts a controller, the ignorant becomes a controller with 

probability 𝜃2𝛽 or a stifler with probability (1 − 𝜃2)𝛽.    

3. When a spreader contacts a stifler, the spreader becomes a stifler with probability 𝛾  

4. When a controller contacts a stifler, the controller becomes a stifler with 

probability 𝜂. 

5. When a spreader contacts a controller, the spreader becomes a controller with 

probability 𝜇. The model is described by the following system of differential 

equations: 
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Table 1. Description of parameters in the model (2.1). 

 

3. Model analysis 

Lemma 3.1. The solutions 𝐼(𝑡), 𝑆(𝑡), 𝑅(𝑡)  and 𝐶(𝑡) of system (2.1) with initial values 

𝐼(0) > 0, 𝑆(0) > 0, 𝑅(0) > 0 and 𝐶(0) > 0 are positive for all 𝑡 > 0 

Proof. According to Sharomi et al. (2011), from the first equation of system (2.1), we 

have 
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Furthermore, from the third equation of system (2.1), we have 
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(3.8) 

Thus, the solutions 𝐼(𝑡), 𝑆(𝑡), 𝑅(𝑡) and 𝐶(𝑡) of system (2.1) remain positive for all 𝑡 >

0 

In the whole process of rumor spreading, the number of spreaders and controllers first 

increase, then decrease and reach zero when the rumors dies out. At that time, the system 

reaches an equilibrium state and has only ignorant and stiflers. Since the total population  

𝑁(𝑡) is independent of time and is a constant, denoted by 𝑁∗. We can obtain the 

equilibrium of the system (2.1) as follows   

𝐸∗ = (𝐼∗. 0. 𝑅∗. 0) 

Where 𝐼∗ + 𝑅∗ =  𝑁∗ , that is, the rumor and controller must disappear with time and all 

𝐼∗ and 𝑅∗ represent stable situations. Next, we have a look at the stability of the 

equilibrium point 𝐸∗ = (𝐼∗. 0. 𝑅∗. 0). 

Theorem 3.1.  If 

 

*

1 2

,
 

   

 
  

  
I min

 

then the equilibrium 𝐸∗ is locally asymptotically stable. 

Proof.  In order to verify the stability of equilibrium point 𝐸∗ , we construct the 

Jacobian matrix of the system (2.1) at a point  𝐸∗ = (𝐼∗. 0. 𝑅∗. 0) as follows: 
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With regard to the above matrix, we know that one zero eigenvalue corresponds to the 

fact that the order of the dynamical system is two. The other zero eigenvalue is related 

to the stable center manifold that is the straight line 𝐼∗ + 𝑅∗ =  𝑁∗ on the  (𝐼∗. 𝑅∗)   plane.  

Thus the stability of the equilibrium point depends on the signal of the reminder 

eigenvalues. The corresponding characteristic polynomial can be written as  

2 22 44 22 44( ) ( ): 0,p J J J J      
 (3.9) 

Where 

22 1      J I R
  

And 

44 2      J I R
.  

From Routh-Hurwitz criterion, we can get when 

 1 2

0 ,
 

   

  
   

  
I min

    

is locally asymptotically stable. 

 

4. Numerical Simulation 

In this section, we use the Runge-Kutta method to solve the differential equations (2.1) 

and analyze the effects on the rumor spreading process by the new factors. Furthermore, 

this simulation allows us to find the key factors to affect the rumor diffusing and the 

ways of control rumor diffusing. In the following simulation we assume 

𝑁 = (5 × 106) + 2. Thus 𝐼(0) = 5 × 106. 𝑆(0) = 1 , 𝐶(0) = 1 and 𝑅(0) = 0. 

Figure 2 shows the trends of ISRC model without the controller agent. The blue line 

represents the densities of controller agent which is zero, i.e. control mechanism is not 

considered. From the following simulation we can find there is a sharp increase in the 

number of spreaders as spreaders begin to propagate a rumor. With further spreading of 

the rumor, the number of spreaders reaches a peak and thereafter declines. Finally, the 

number of spreaders is zero and this leads to the termination of rumor spreading. In this 

whole process, the number of ignorant always reduces while the number of stiflers 

always increases until they reach the balance, respectively. As we see in Figure 2, the 
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spreader density attains its maximum at time 𝑡 = 1.11 . In fact, the peak value of spreader 

density max {𝑆(𝑡)} is 3.161573 × 106 , i.e., the highest densities of people are spreading 

the rumor is 3.161573 × 106.  

 

Figure 2. Densities of ISR over time with 𝛼 = 4𝛾 = 0.000004 , 𝛽 = 𝜇 = 𝜂 = 0, 

𝜃1 = 0.8. 

Figure 3 shows the general trends of the four kinds of agents in the ISRC rumor spreading 

model. This simulation illustrates the effect of a controller agent on the rate of spreader 

agent. From the following simulation we can find that the variation trend of the number 

of controllers is similar to that of the spreaders, which increases at first and then 

decreases to zero. Furthermore, this simulation shows that if, for example, we suppose 

the controller agent as a new rumor against the previous rumor with transmission rate 𝛽 

equal with transmission rate 𝛼 , and then we can control and reduce the maximum rumor 

influence of the previous rumor. As we see in Figure 3, the spreader density is less than 

the controller density. This occurs because of the presence of the parameter µ. 

Furthermore, the spreader density attains its maximum at times 𝑡 = 0.69 with 𝑆(0.69) =

1.354440 × 106.     

In addition, the peak value of controller density is  2.151224 × 106  which occurs at 

time 𝑡 = 0.78 . 

Figure 4 shows how the densities of controllers change over time for different 

transmission rate between controllers and ignorant. This simulation represents the effect 

of transmission rate between controllers and ignorant on ISRC model. The blue asterisk 

line represents the scenario that trans- mission rate between controllers and ignorant is 

lower than transmission rate between spreaders and 
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Figure 3. Densities of ISRC over time with 𝛼 = 𝛽 = 0.000006 , 𝛾 = 𝜇 = 𝜂 =

0.000001 , 𝜃1 = 𝜃2 = 0.8. 

Ignorant, i.e. 𝛽 < 𝛼. The other lines represent the scenario that 𝛽 ≥ 𝛼. Furthermore, this 

simulation attempts to illustrate that one of the ways to control spreading rumor is spread 

a new rumor with high impact compared to the previous rumor.  

 

Figure 4. Density of spreaders and controllers over time under different transmission 

rate 𝛽 with 𝛼 = 𝛽 = 0.000006 , 𝛾 = 𝜇 = 𝜂 = 0.000001 , 𝜃1 = 𝜃2 = 0.8.   

Figure 5 describes how the ratio between spreaders and controllers change with different 

transmission rate 𝜇 over time. The blue asterisk line represents the scenario that 

transmission rate between spreaders and controllers is zero, i.e. 𝜇 = 0 . In this case, the 

number of spreaders and controllers is equal. The other lines represent the scenario 

that 𝜇 > 0 . As we see in Figure 5, when 𝜇 > 0 , the ratio 
𝑆(𝑡)

𝐶(𝑡)
 decreases with increasing 

time. Furthermore, this ratio decreases relatively faster with increasing 𝜇. For instance, 

the number of controllers at time 𝑡 = 0.7 will be about 1.46, 2.14 and 3.13 times the 

number of spreaders with respect to 𝜇 = 0.00001 , 𝜇 = 0.00002 and 𝜇 = 0.00003 

respectively.  
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Figure 5. The ratio between spreaders and controllers over time under different 

transmission rate 𝜇 with 𝛼 = 𝛽 = 0.000006 , 𝛾 = 𝜂 = 0.000001 , 𝜃1 = 𝜃2 = 0.8.   

5. Conclusion 

In this paper, we studied the new pattern of rumor spreading corresponding to the 

appearance of controller agent. We showed that the model established in this paper 

possesses non-negative solutions, as desired in any rumor spreading dynamics. By using 

stability analysis, we obtained a sufficient condition on the parameters for the local 

asymptotical stability of the equilibrium point. Numerical simulations are also conducted 

to support our analytic results. 
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